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Husband to Hydrolysis



 

Articles in This Slice


	HUSBAND 	HYADES

	HUSBAND AND WIFE 	HYATT, ALPHEUS

	HUSHI 	HYBLA

	HUSKISSON, WILLIAM 	HYBRIDISM

	HUSS 	HYDANTOIN

	HUSSAR 	HYDE (17th century English family)

	HUSSITES 	HYDE, THOMAS

	HUSTING 	HYDE (market town)

	HUSUM 	HYDE DE NEUVILLE, JEAN GUILLAUME

	HUTCHESON, FRANCIS 	HYDE PARK

	HUTCHINSON, ANNE 	HYDERABAD (city of India)

	HUTCHINSON, JOHN (Puritan soldier) 	HYDERABAD (state of India)

	HUTCHINSON, JOHN (English theological writer) 	HYDERABAD (capital of Hyderabad)

	HUTCHINSON, SIR JONATHAN 	HYDER ALI

	HUTCHINSON, THOMAS 	HYDRA (island of Greece)

	HUTCHINSON (Kansas, U.S.A.) 	HYDRA (legendary monster)

	HUTTEN, PHILIPP VON 	HYDRA (constellation)

	HUTTEN, ULRICH VON 	HYDRACRYLIC ACID

	HUTTER, LEONHARD 	HYDRANGEA

	HUTTON, CHARLES 	HYDRASTINE

	HUTTON, JAMES 	HYDRATE

	HUTTON, RICHARD HOLT 	HYDRAULICS

	HUXLEY, THOMAS HENRY 	HYDRAZINE

	HUY 	HYDRAZONE

	HUYGENS, CHRISTIAAN 	HYDROCARBON

	HUYGENS, SIR CONSTANTIJN 	HYDROCELE

	HUYSMANS (Flemish painters) 	HYDROCEPHALUS

	HUYSMANS, JORIS KARL 	HYDROCHARIDEAE

	HUYSUM, JAN VAN 	HYDROCHLORIC ACID

	HWANG HO 	HYDRODYNAMICS

	HWICCE 	HYDROGEN

	HYACINTH (flower) 	HYDROGRAPHY

	HYACINTH (gem-stone) 	HYDROLYSIS

	HYACINTHUS 	 
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CONTRIBUTORS,1 WITH THE HEADINGS OF THE

ARTICLES IN THIS VOLUME SO SIGNED.

 


 	A. Ba.
	Adolfo Bartoli (1833-1894).


Formerly Professor of Literature at the Istituto di studi superiori at Florence.
Author of Storia della letteratura Italiana; &c.
	Italian Literature (in part).


 	A. Bo.*
	Auguste Boudinhon, D.D., D.C.L.


Professor of Canon Law at the Catholic University of Paris. Honorary Canon of
Paris. Editor of the Canoniste contemporain.
	Index Librorum Prohibitorum;

Infallibility.


 	A. Cy.
	Arthur Ernest Cowley, M.A., Litt.D.


Sub-Librarian of the Bodleian Library, Oxford. Fellow of Magdalen College.
	Ibn Gabirol;

Inscriptions: Semitic.


 	A. C. G.
	Albert Charles Lewis Gotthilf Günther, M.A., M.D., Ph.D., F.R.S.


Keeper of Zoological Department, British Museum, 1875-1895. Gold Medallist,
Royal Society, 1878. Author of Catalogues of Colubrine Snakes, Batrachia Salientia,
and Fishes in the British Museum; Reptiles of British India; Fishes of Zanzibar;
Reports on the “Challenger” Fishes; &c.
	Ichthyology (in part).


 	A. E. G.*
	Rev. Alfred Ernest Garvie, M.A., D.D.


Principal of New College, Hampstead. Member of the Board of Theology and the
Board of Philosophy, London University. Author of Studies in the inner Life
of Jesus; &c.
	Immortality;

Inspiration.


 	A. E. H. L.
	Augustus Edward Hough Love, M.A., D.Sc., F.R.S.


Sedleian Professor of Natural Philosophy in the University of Oxford. Hon.
Fellow of Queen’s College, Oxford; formerly Fellow of St John’s College, Cambridge.
Secretary to the London Mathematical Society.
	Infinitesimal Calculus.


 	A. F. C.
	Alexander Francis Chamberlain, A.M., Ph.D.


Assistant Professor of Anthropology, Clark University, Worcester, Massachusetts.
Member of American Antiquarian Society; Hon. Member of American Folk-lore
Society. Author of The Child and Childhood in Folk Thought.
	Indians, North American.


 	A. G.
	Major Arthur George Frederick Griffiths (d. 1908).


H.M. Inspector of Prisons, 1878-1896. Author of The Chronicles of Newgate;
Secrets of the Prison House; &c.
	Identification.


 	A. Ge.
	Sir Archibald Geikie, LL.D.


See the biographical article, Geikie, Sir A.
	Hutton, James.


 	A. Go.*
	Rev. Alexander Gordon, M.A.


Lecturer on Church History in the University of Manchester.
	Illuminati.


 	A. G. G.
	Sir Alfred George Greenhill, M.A., F.R.S.


Formerly Professor of Mathematics in the Ordnance College, Woolwich. Author
of Differential and Integral Calculus with Applications; Hydrostatics; Notes on
Dynamics; &c.
	Hydromechanics.


 	A. H.-S.
	Sir A. Houtum-Schindler, C.I.E.


General in the Persian Army. Author of Eastern Persian Irak.
	Isfahān (in part).


 	A. M. C.
	Agnes Mary Clerke.


See the biographical article, Clerke, A. M.
	Huygens, Christiaan.


 	A. N.
	Alfred Newton, F.R.S.


See the biographical article, Newton, Alfred.
	Ibis;

Icterus.


 	A. So.
	Albrecht Socin, Ph.D. (1844-1899).


Formerly Professor of Semitic Philology in the Universities of Leipzig and Tübingen.
Author of Arabische Grammatik; &c.
	Irak-Arabi (in part).


 	A. S. Wo.
	Arthur Smith Woodward, LL.D., F.R.S.


Keeper of Geology, Natural History Museum, South Kensington. Secretary of
the Geological Society, London.
	Ichthyosaurus;

Iguanodon.


 	A. W. H.*
	Arthur William Holland.


Formerly Scholar of St John’s College, Oxford. Bacon Scholar of Gray’s Inn,
1900.
	Imperial Cities;

Instrument of Government.


 	A. W. Po.
	Alfred William Pollard, M.A.


Assistant Keeper of Printed Books, British Museum. Fellow of King’s College,
London. Hon. Secretary Bibliographical Society. Editor of Books about Books
and Bibliographica. Joint-editor of The Library. Chief Editor of the “Globe”
Chaucer.
	Incunabula.


 	A. W. R.
	Alexander Wood Renton, M.A., LL.B.


Puisne judge of the Supreme Court of Ceylon. Editor of Encyclopaedia of the
Laws of England.
	Inebriety, Law of;

Insanity: Law.


 	C. F. A.
	Charles Francis Atkinson.


Formerly Scholar of Queen’s College, Oxford. Captain, 1st City of London (Royal
Fusiliers). Author of The Wilderness and Cold Harbour.
	Infantry;

Italian Wars.


 	C. G.
	Colonel Charles Grant.


Formerly Inspector of Military Education in India.
	India: Costume.


 	C. H. Ha.
	Carlton Huntley Hayes, A.M., Ph.D.


Assistant Professor of History at Columbia University, New York City. Member
of the American Historical Association.
	Innocent V., VIII.


 	C. Ll. M.
	Conway Lloyd Morgan, LL.D., F.R.S.


Professor of Psychology at the University of Bristol. Principal of University College,
Bristol, 1887-1909. Author of Animal Life and Intelligence; Habit and Instinct.
	Instinct;

Intelligence in Animals.


 	C. R. B.
	Charles Raymond Beazley, M.A., D.Litt., F.R.G.S., F.R.Hist.S.


Professor of Modern History in the University of Birmingham. Formerly Fellow
of Merton College, Oxford; and University Lecturer in the History of Geography.
Lothian Prizeman, Oxford, 1889. Lowell Lecturer, Boston, 1908. Author of
Henry the Navigator; The Dawn of Modern Geography; &c.
	Ibn Batuta (in part);

Idrisi.


 	C. S.*
	Carlo Salvioni.


Professor of Classical and Romance Languages, University of Milan.
	Italian Language (in part).


 	C. T. L.
	Charlton Thomas Lewis, Ph.D. (1834-1904).


Formerly Lecturer on Life Insurance, Harvard and Columbia Universities, and on
Principles of Insurance, Cornell University. Author of History of Germany; Essays;
Addresses; &c.
	Insurance (in part).


 	C. We.
	Cecil Weatherly.


Formerly Scholar of Queen’s College, Oxford. Barrister-at-Law, Inner Temple.
	Infant Schools.


 	D. B. Ma.
	Duncan Black MacDonald, M.A., D.D.


Professor of Semitic Languages, Hartford Theological Seminary, U.S.A. Author
of Development of Muslim Theology, Jurisprudence and Constitutional Theory;
Selection from Ibn Khaldum; Religious Attitude and Life in Islam; &c.
	Imām.


 	D. G. H.
	David George Hogarth, M.A.


Keeper of the Ashmolean Museum, Oxford. Fellow of Magdalen College, Oxford.
Fellow of the British Academy. Excavated at Paphos, 1888; Naucratis, 1899 and
1903; Ephesus, 1904-1905; Assiut, 1906-1907; Director, British School at Athens,
1897-1900; Director, Cretan Exploration Fund, 1899.
	Ionia (in part);

Isauria.


 	D. H.
	David Hannay.


Formerly British Vice-Consul at Barcelona. Author of Short History of Royal
Navy, 1217-1688; Life of Emilio Castelar; &c.
	Impressment.


 	D. F. T.
	Donald Francis Tovey.


Author of Essays in Musical Analysis; comprising The Classical Concerto, The
Goldberg Variations, and analyses of many other classical works.
	Instrumentation.


 	D. S. M.
	Dugald Sutherland MacColl, M.A., LL.D.


Keeper of the National Gallery of British Art (Tate Gallery). Lecturer on the History
of Art, University College, London; Fellow of University College, London.
Author of Nineteenth Century Art; &c.
	Impressionism.


 	E. A. M.
	Edward Alfred Minchin, M.A., F.Z.S.


Professor of Protozoology in the University of London. Formerly Fellow of Merton
College, Oxford; and Lecturer on Comparative Anatomy in the University of Oxford.
Author of “Sponges and Sporozoa” in Lankester’s Treatise on Zoology; &c.
	Hydromedusae;

Hydrozoa.


 	E. Br.
	Ernest Barker, M.A.


Fellow and Lecturer in Modern History, St John’s College, Oxford. Formerly
Fellow and Tutor of Merton College. Craven Scholar, 1895.
	Imperial Chamber.


 	E. Bra.
	Edwin Bramwell, M.B., F.R.C.P., F.R.S. (Edin.).


Assistant Physician, Royal Infirmary, Edinburgh.
	Hysteria (in part).


 	E. C. B.
	Right Rev. Edward Cuthbert Butler, O.S.B., D.Litt.


Abbot of Downside Abbey, Bath. Author of “The Lausiac History of Palladius”
in Cambridge Texts and Studies.
	Imitation of Christ.


 	E. C. Q.
	Edmund Crosby Quiggin, M.A.


Fellow, Lecturer in Modern History, and Monro Lecturer in Celtic, Gonville and
Caius College, Cambridge.
	Ireland: Early History.


 	E. F. S.
	Edward Fairbrother Strange.


Assistant Keeper, Victoria and Albert Museum, South Kensington. Member of
Council, Japan Society. Author of numerous works on art subjects. Joint-editor
of Bell’s “Cathedral” Series.
	Illustration: Technical Developments.


 	E. F. S. D.
	Lady Dilke.


See the biographical article: Dilke, Sir C. W., Bart.
	Ingres.


 	E. G.
	Edmund Gosse, LL.D.


See the biographical article, Gosse, Edmund.
	Huygens, Sir Constantijn;

Ibsen;

Idyl.


 	E. Hü.
	Emil Hübner.


See the biographical article, Hübner, Emil.
	Inscriptions: Latin (in part).


 	E. H. B.
	Sir Edward Herbert Bunbury, Bart., M.A., F.R.G.S. (d. 1895).


M.P. for Bury St Edmunds, 1847-1852. Author of a History of Ancient Geography;
&c.
	Ionia (in part).


 	E. H. M.
	Ellis Hovell Minns, M.A.


Lecturer and Assistant Librarian, and formerly Fellow, Pembroke College, Cambridge
University Lecturer in Palaeography.
	Iazyges;

Issedones.


 	E. H. P.
	Edward Henry Palmer, M.A.


See the biographical article, Palmer, E. H.
	Ibn Khaldun (in part).


 	E. K.
	Edmund Knecht, Ph.D., M.Sc.Tech.(Manchester), F.I.C.


Professor of Technological Chemistry, Manchester University. Head of Chemical
Department, Municipal School of Technology, Manchester. Examiner in Dyeing,
City and Guilds of London Institute. Author of A Manual of Dyeing; &c. Editor
of Journal of the Society of Dyers and Colourists.
	Indigo.


 	E. L. H.
	The Right Rev. the Bishop of Lincoln (Edward Lee Hicks).


Honorary Fellow of Corpus Christi College, Oxford. Formerly Canon Residentiary
of Manchester. Fellow and Tutor of Corpus Christi College. Author of Manual
of Greek Historical Inscriptions; &c.
	Inscriptions: Greek (in part).


 	Ed. M.
	Eduard Meyer, Ph.D., D.Litt.(Oxon.), LL.D.


Professor of Ancient History in the University of Berlin. Author of Geschichte des
Alterthums; Geschichte des alten Aegyptens; Die Israeliten und ihre Nachbarstämme.
	Hystaspes;

Iran.


 	E. M. T.
	Sir Edward Maunde Thompson, G.C.B., I.S.O., D.C.L., Litt.D., LL.D.


Director and Principal Librarian, British Museum, 1898-1909. Sandars Reader
in Bibliography, Cambridge, 1895-1896. Hon. Fellow of University College,
Oxford. Correspondent of the Institute of France and of the Royal Prussian
Academy of Sciences. Author of Handbook of Greek and Latin Palaeography.
Editor of Chronicon Angliae. Joint-editor of publications of the Palaeographical
Society, the New Palaeographical Society, and of the Facsimile of the Laurentian
Sophocles.
	Illuminated MSS.


 	E. O.*
	Edmund Owen, M.B., F.R.C.S., LL.D., D.Sc.


Consulting Surgeon to St Mary’s Hospital, London, and to the Children’s Hospital,
Great Ormond Street; late Examiner in Surgery at the Universities of Cambridge,
Durham and London. Author of A Manual of Anatomy for Senior Students.
	Hydrocephalus.


 	F. A. F.
	Frank Albert Fetter, Ph.D.


Professor of Political Economy and Finance, Cornell University. Member of the
State Board of Charities. Author of The Principles of Economics; &c.
	Interstate Commerce.


 	F. C. C.
	Frederick Cornwallis Conybeare, M.A., D.Th.(Giessen).


Fellow of the British Academy. Formerly Fellow of University College, Oxford.
Author of The Ancient Armenian Texts of Aristotle; Myth, Magic and Morals; &c.
	Iconoclasts;

Image Worship.


 	F. G. M. B.
	Frederick George Meeson Beck, M.A.


Fellow and Lecturer in Classics, Clare College, Cambridge.
	Hwicce.


 	F. J. H.
	Francis John Haverfield, M.A., LL.D., F.S.A.


Camden Professor of Ancient History in the University of Oxford. Fellow of
Brasenose College. Fellow of the British Academy. Formerly Censor, Student,
Tutor and Librarian of Christ Church, Oxford. Ford’s Lecturer, 1906-1907.
Author of Monographs on Roman History, especially Roman Britain; &c.
	Icknield Street.


 	F. Ll. G.
	Francis Llewellyn Griffith, M.A., Ph.D., F.S.A.


Reader in Egyptology, Oxford University. Editor of the Archaeological Survey
and Archaeological Reports of the Egypt Exploration Fund. Fellow of Imperial
German Archaeological Institute.
	Hyksos;

Isis.


 	F. P.*
	Frederick Peterson, M.D., Ph.D.


Professor of Psychiatry, Columbia University. President of New York State
Commission in Lunacy, 1902-1906. Author of Mental Diseases; &c.
	Insanity: Hospital Treatment.


 	F. S. P.
	Francis Samuel Philbrick, A.M., Ph.D.


Formerly Fellow of Nebraska State University, and Scholar and Resident Fellow of
Harvard University. Member of American Historical Association.
	Independence, Declaration of.


 	F. Wa.
	Francis Watt, M.A.


Barrister-at-Law, Middle Temple. Author of Law’s Lumber Room.
	Inn and Innkeeper.


 	F. W. R.*
	Frederick William Rudler, I.S.O., F.G.S.


Curator and Librarian of the Museum of Practical Geology, London, 1879-1902.
President of the Geologists’ Association, 1887-1889.
	Hyacinth;

Iolite.


 	F. Y. P.
	Frederick York Powell, D.C.L., LL.D.


See the biographical article, Powell, Frederick York.
	Iceland: History, and Ancient Literature.


 	G. A. B.
	George A. Boulenger, F.R.S., D.Sc., Ph.D.


In charge of the collections of Reptiles and Fishes, Department of Zoology, British
Museum. Vice-President of the Zoological Society of London.
	Ichthyology (in part).


 	G. A. Gr.
	George Abraham Grierson, C.I.E., Ph.D., D.Litt.(Dublin).


Member of the Indian Civil Service, 1873-1903. In charge of Linguistic Survey
of India, 1898-1902. Gold Medallist, Royal Asiatic Society, 1909. Vice-President
of the Royal Asiatic Society. Formerly Fellow of Calcutta University. Author
of The Languages of India; &c.
	Indo-Aryan Languages.


 	G. A. J. C.
	Grenville Arthur James Cole.


Director of the Geological Survey of Ireland. Professor of Geology, Royal College
of Science for Ireland, Dublin. Author of Aids in Practical Geology; &c.
	Ireland: Geology.


 	G. B.
	Sir George Christopher Molesworth Birdwood, K.C.I.E.


See the biographical article, Birdwood, Sir G. C. M.
	Incense.


 	G. F. H.*
	George Francis Hill, M.A.


Assistant in Department of Coins and Medals, British Museum. Author of
Sources for Greek History 478-431 B.C.; Handbook of Greek and Roman Coins; &c.
	Inscriptions: Greek (in part).


 	G. G. Co.
	George Gordon Coulton, M.A.


Birkbeck Lecturer in Ecclesiastical History, Trinity College, Cambridge. Author of
Medieval Studies; Chaucer and his England; &c.
	Indulgence.


 	G. H. C.
	George Herbert Carpenter, B.Sc. (Lond.).


Professor of Zoology in the Royal College of Science, Dublin. Author of Insects:
their Structure and Life.
	Hymenoptera;

Ichneumon-Fly;

Insect.


 	G. I. A.
	Graziadio I. Ascoli.


Senator of the Kingdom of Italy. Professor of Comparative Grammar at the
University of Milan. Author of Codice Islandese; &c.
	Italian Language (in part).


 	G. J.
	George Jamieson, C.M.G., M.A.


Formerly Consul-General at Shanghai, and Consul and Judge of the Supreme Court,
Shanghai.
	Hwang Ho.


 	G. K.
	Gustav Krüger, Ph.D.


Professor of Church History in the University of Giessen. Author of Das Papstthum;
&c.
	Irenaeus.


 	G. P. M.
	George Percival Mudge, A.R.C.S., F.Z.S.


Lecturer on Biology, London Hospital Medical College, and London School of
Medicine for Women, University of London. Author of A Text Book of Zoology; &c.
	Incubation and Incubators.


 	G. W. K.
	Very Rev. George William Kitchin, M.A., D.D., F.S.A.


Dean of Durham, and Warden of the University of Durham. Hon. Student of
Christ Church, Oxford. Fellow of King’s College, London. Dean of Winchester,
1883-1894. Author of A History of France; &c.
	Hutten, Ulrich von.


 	G. W. T.
	Rev. Griffithes Wheeler Thatcher, M.A., B.D.


Warden of Camden College, Sydney, N.S.W. Formerly Tutor in Hebrew and Old
Testament History at Mansfield College, Oxford. Author of a Commentary on
Judges; An Arabic Grammar; &c.
	Ibn ‘Abd Rabbihi;

Ibn ‘Arabi;

Ibn Athīr;

Ibn Duraid;

Ibn Faradī;

Ibn Fārid;

Ibn Hazm;

Ibn Hisham;

Ibn Isḥaq;

Ibn Jubair;

Ibn Khaldūn (in part);

Ibn Khallikān;

Ibn Qutaiba;

Ibn Ṣa‘d;

Ibn Ṭufail;

Ibn Usaibi‘a;

Ibrahīm Al-Mauṣilī.
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	Hugh Chisholm, M.A.


Formerly Scholar of Corpus Christi College, Oxford. Editor the 11th edition
of the Encyclopaedia Britannica; Co-editor of the 10th edition.
	Iron Mask;

Ismail.
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See the biographical article, Rawlinson, Sir Henry Creswicke.
	Isfahan: History.
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Intestinal Obstruction.
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	Ibn Batuta (in part).
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HUSBAND, properly the “head of a household,” but now
chiefly used in the sense of a man legally joined by marriage to
a woman, his “wife”; the legal relations between them are
treated below under Husband and Wife. The word appears
in O. Eng. as húsbonda, answering to the Old Norwegian
húsbóndi, and means the owner or freeholder of a hus, or house.
The last part of the word still survives in “bondage” and “bondman,”
and is derived from bua, to dwell, which, like Lat. colere,
means also to till or cultivate, and to have a household. “Wife,”
in O. Eng. wif, appears in all Teutonic languages except Gothic;
cf. Ger. Weib, Dutch wijf, &c., and meant originally simply
a female, “woman” itself being derived from wifman, the
pronunciation of the plural wimmen still preserving the original i.
Many derivations of “wife” have been given; thus it has been
connected with the root of “weave,” with the Gothic waibjan,
to fold or wrap up, referring to the entangling clothes worn
by a woman, and also with the root of vibrare, to tremble.
These are all merely guesses, and the ultimate history of the
word is lost. It does not appear outside Teutonic languages.
Parallel to “husband” is “housewife,” the woman managing
a household. The earlier húswif was pronounced hussif, and
this pronunciation survives in the application of the word to
a small case containing scissors, needles and pins, cottons, &c.
From this form also derives “hussy,” now only used in a depreciatory
sense of a light, impertinent girl. Beyond the meaning
of a husband as a married man, the word appears in connexion
with agriculture, in “husbandry” and “husbandman.” According
to some authorities “husbandman” meant originally in
the north of England a holder of a “husbandland,” a manorial
tenant who held two ox-gangs or virgates, and ranked next
below the yeoman (see J. C. Atkinson in Notes and Queries,
6th series, vol. xii., and E. Bateson, History of Northumberland,
ii., 1893). From the idea of the manager of a household,
“husband” was in use transferred to the manager of an estate,
and the title was held by certain officials, especially in the great
trading companies. Thus the “husband” of the East India
Company looked after the interests of the company at the
custom-house. The word in this sense is practically obsolete,
but it still appears in “ship’s husband,” an agent of the owners
of a ship who looks to the proper equipping of the vessel, and her
repairs, procures and adjusts freights, keeps the accounts, makes
charter-parties and acts generally as manager of the ship’s
employment. Where such an agent is himself one of the owners
of the vessel, the name of “managing owner” is used. The
“ship’s husband” or “managing owner” must register his
name and address at the port of registry (Merchant Shipping
Act 1894, § 59). From the use of “husband” for a good and
thrifty manager of a household, the verb “to husband” means
to economize, to lay up a store, to save.



HUSBAND AND WIFE, Law relating to. For the modes
in which the relation of husband and wife may be constituted
and dissolved, see Marriage and Divorce. The present article
will deal only with the effect of marriage on the legal position
of the spouses. The person chiefly affected is the wife, who
probably in all political systems becomes subject, in consequence
of marriage, to some kind of disability. The most favourable
system scarcely leaves her as free as an unmarried woman; and
the most unfavourable subjects her absolutely to the authority
of her husband. In modern times the effect of marriage on
property is perhaps the most important of its consequences,
and on this point the laws of different states show wide diversity
of principles.

The history of Roman law exhibits a transition from an
extreme theory to its opposite. The position of the wife in the
earliest Roman household was regulated by the law of Manus.
She fell under the “hand” of her husband,—became one of his
family, along with his sons and daughters, natural or adopted,
and his slaves. The dominion which, so far as the children
was concerned, was known as the patria potestas, was, with
reference to the wife, called the manus. The subject members
of the family, whether wife or children, had, broadly speaking,
no rights of their own. If this institution implied the complete
subjection of the wife to the husband, it also implied a much
closer bond of union between them than we find in the later
Roman law. The wife on her husband’s death succeeded, like
the children, to freedom and a share of the inheritance. Manus,
however, was not essential to a legal marriage; its restraints
were irksome and unpopular, and in course of time it ceased
to exist, leaving no equivalent protection of the stability of
family life. The later Roman marriage left the spouses comparatively
independent of each other. The distance between
the two modes of marriage may be estimated by the fact that,

while under the former the wife was one of the husband’s immediate
heirs, under the latter she was called to the inheritance only
after his kith and kin had been exhausted, and only in preference
to the treasury. It seems doubtful how far she had, during
the continuance of marriage, a legal right to enforce aliment
from her husband, although if he neglected her she had the
unsatisfactory remedy of an easy divorce. The law, in fact, preferred
to leave the parties to arrange their mutual rights and
obligations by private contracts. Hence the importance of the law
of settlements (Dotes). The Dos and the Donatio ante nuptias were
settlements by or on behalf of the husband or wife, during the
continuance of the marriage, and the law seems to have looked
with some jealousy on gifts made by one to the other in any
less formal way, as possibly tainted with undue influence. During
the marriage the husband had the administration of the property.

The manus of the Roman law appears to be only one instance
of an institution common to all primitive societies. On the
continent of Europe after many centuries, during which local
usages were brought under the influence of principles derived
from the Roman law, a theory of marriage became established,
the leading feature of which is the community of goods between
husband and wife. Describing the principle as it prevails in
France, Story (Conflict of Laws, § 130) says: “This community
or nuptial partnership (in the absence of any special contract)
generally extends to all the movable property of the husband
and wife, and to the fruits, income and revenue thereof....
It extends also to all immovable property of the husband and
wife acquired during the marriage, but not to such immovable
property as either possessed at the time of the marriage, or
which came to them afterwards by title of succession or by gift.
The property thus acquired by this nuptial partnership is liable
to the debts of the parties existing at the time of the marriage;
to the debts contracted by the husband during the community,
or by the wife during the community with the consent of the
husband; and to debts contracted for the maintenance of the
family.... The husband alone is entitled to administer the
property of the community, and he may alien, sell or mortgage
it without the concurrence of the wife.” But he cannot dispose
by will of more than his share of the common property, nor can
he part with it gratuitously inter vivos. The community is
dissolved by death (natural or civil), divorce, separation of
body or separation of property. On separation of body or of
property the wife is entitled to the full control of her movable
property, but cannot alien her immovable property, without
her husband’s consent or legal authority. On the death of
either party the property is divided in equal moieties between
the survivor and the heirs of the deceased.

Law of England.—The English common law as usual followed
its own course in dealing with this subject, and in no department
were its rules more entirely insular and independent. The
text writers all assumed two fundamental principles, which
between them established a system of rights totally unlike that
just described. Husband and wife were said to be one person in
the eye of the law—unica persona, quia caro una et sanguis unus.
Hence a man could not grant or give anything to his wife,
because she was himself, and if there were any compacts between
them before marriage they were dissolved by the union of persons.
Hence, too, the old rule of law, now greatly modified, that husband
and wife could not be allowed to give evidence against each
other, in any trial, civil or criminal. The unity, however, was
one-sided only; it was the wife who was merged in the husband,
not the husband in the wife. And when the theory did not
apply, the disabilities of “coverture” suspended the active
exercise of the wife’s legal faculties. The old technical phraseology
described husband and wife as baron and feme; the rights of
the husband were baronial rights. From one point of view the
wife was merged in the husband, from another she was as one of
his vassals. A curious example is the immunity of the wife in
certain cases from punishment for crime committed in the
presence and on the presumed coercion of the husband. “So
great a favourite,” says Blackstone, “is the female sex of the
laws of England.”

The application of these principles with reference to the
property of the wife, and her capacity to contract, may now be
briefly traced.

The freehold property of the wife became vested in the husband
and herself during the coverture, and he had the management
and the profits. If the wife had been in actual possession at
any time during the marriage of an estate of inheritance, and if
there had been a child of the marriage capable of inheriting,
then the husband became entitled on his wife’s death to hold
the estate for his own life as tenant by the curtesy of England
(curialitas).1 Beyond this, however, the husband’s rights did
not extend, and the wife’s heir at last succeeded to the inheritance.
The wife could not part with her real estate without the concurrence
of the husband; and even so she must be examined
apart from her husband, to ascertain whether she freely and
voluntarily consented to the deed.

With regard to personal property, it passed absolutely at
common law to the husband. Specific things in the possession
of the wife (choses in possession) became the property of the
husband at once; things not in possession, but due and recoverable
from others (choses in action), might be recovered
by the husband. A chose in action not reduced into actual
possession, when the marriage was dissolved by death, reverted
to the wife if she was the survivor; if the husband survived
he could obtain possession by taking out letters of administration.
A chose in action was to be distinguished from a specific
thing which, although the property of the wife, was for the
time being in the hands of another. In the latter case the
property was in the wife, and passed at once to the husband;
in the former the wife had a mere jus in personam, which the
husband might enforce if he chose, but which was still capable
of reverting to the wife if the husband died without
enforcing it.

The chattels real of the wife (i.e., personal property, dependent
on, and partaking of, the nature of realty, such as leaseholds)
passed to the husband, subject to the wife’s right of survivorship,
unless barred by the husband by some act done during his life.
A disposition by will did not bar the wife’s interest; but any
disposition inter vivos by the husband was valid and effective.

The courts of equity, however, greatly modified the rules of
the common law by the introduction of the wife’s separate
estate, i.e. property settled to the wife for her separate use,
independently of her husband. The principle seems to have
been originally admitted in a case of actual separation, when
a fund was given for the maintenance of the wife while living
apart from her husband. And the conditions under which
separate estate might be enjoyed had taken the Court of Chancery
many generations to develop. No particular form of words was
necessary to create a separate estate, and the intervention of
trustees, though common, was not necessary. A clear intention
to deprive the husband of his common law rights was sufficient
to do so. In such a case a married woman was entitled to deal
with her property as if she was unmarried, although the earlier
decisions were in favour of requiring her binding engagements
to be in writing or under seal. But it was afterwards held that
any engagements, clearly made with reference to the separate
estate, would bind that estate, exactly as if the woman had been
a feme sole. Connected with the doctrine of separate use was
the equitable contrivance of restraint on anticipation with which
later legislation has not interfered, whereby property might be
so settled to the separate use of a married woman that she could
not, during coverture, alienate it or anticipate the income.
No such restraint is recognized in the ease of a man or of a feme
sole, and it depends entirely on the separate estate; and the
separate estate has its existence only during coverture, so that
a woman to whom such an estate is given may dispose of it so
long as she is unmarried, but becomes bound by the restraint as
soon as she is married. In yet another way the court of Chancery
interfered to protect the interests of married women. When a

husband sought the aid of that court to get possession of his
wife’s choses in action, he was required to make a provision
for her and her children out of the fund sought to be recovered.
This is called the wife’s equity to a settlement, and is said to be
based on the original maxim of Chancery jurisprudence, that
“he who seeks equity must do equity.” Two other property
interests of minor importance are recognised. The wife’s pin-money
is a provision for the purchase of clothes and ornaments
suitable to her husband’s station, but it is not an absolute
gift to the separate use of the wife; and a wife surviving her
husband cannot claim for more than one year’s arrears of pin-money.
Paraphernalia are jewels and other ornaments given
to the wife by her husband for the purpose of being worn by her,
but not as her separate property. The husband may dispose
of them by act inter vivos but not by will, unless the will confers
other benefits on the wife, in which case she must elect between
the will and the paraphernalia. She may also on the death
of the husband claim paraphernalia, provided all creditors
have been satisfied, her right being superior to that of any
legatee.

The corresponding interest of the wife in the property of the
husband is much more meagre and illusory. Besides a general
right to maintenance at her husband’s expense, she has at common
law a right to dower (q.v.) in her husband’s lands, and to a pars
rationabilis (third) of his personal estate, if he dies intestate.
The former, which originally was a solid provision for widows,
has by the ingenuity of conveyancers, as well as by positive
enactment, been reduced to very slender dimensions. It may
be destroyed by a mere declaration to that effect on the part
of the husband, as well as by his conveyance of the land or by
his will.

The common practice of regulating the rights of husband,
wife and children by marriage settlements obviates the hardships
of the common law—at least for the women of the wealthier
classes. The legislature by the Married Women’s Property
Acts of 1870, 1874, 1882 (which repealed and consolidated the acts
of 1870 and 1874), 1893 and 1907 introduced very considerable
changes. The chief provisions of the Married Women’s Property
Act 1882, which enormously improved the position of women
unprotected by marriage settlement, are, shortly, that a married
woman is capable of acquiring, holding and disposing of by will
or otherwise, any real and personal property, in the same manner
as if she were a feme sole, without the intervention of any trustee.
The property of a woman married after the beginning of the
act, whether belonging to her at the time of marriage or acquired
after marriage, is held by her as a feme sole. The same is the case
with property acquired after the beginning of the act by a woman
married before the act. After marriage a woman remains liable
for antenuptial debts and liabilities, and as between her and her
husband, in the absence of contract to the contrary, her separate
property is deemed primarily liable. The husband is only
liable to the extent of property acquired from or through his
wife. The act also contained provisions as to stock, investment,
insurance, evidence and other matters. The effect of the act
was to render obsolete the law as to what created a separate
use or a reduction into possession of choses in action, as to equity
to a settlement, as to fraud on the husband’s marital rights,
and as to the inability of one of two married persons to give
a gift to the other. Also, in the case of a gift to a husband and
wife in terms which would make them joint tenants if unmarried,
they no longer take as one person but as two. The act contained
a special saving of existing and future settlements; a settlement
being still necessary where it is desired to secure only the enjoyment
of the income to the wife and to provide for children.
The act by itself would enable the wife, without regard to family
claims, instantly to part with the whole of any property which
might come to her. Restraint on anticipation was preserved
by the act, subject to the liability of such property for antenuptial
debts, and to the power given by the Conveyancing Act 1881
to bind a married woman’s interest notwithstanding a clause
of restraint. The Married Women’s Property Act of 1893
repealed two clauses in the act of 1882, the exact bearing of
which had been a matter of controversy. It provided specifically
that every contract thereinafter entered into by a married
woman, otherwise than as an agent, should be deemed to be a
contract entered into by her with respect to and be binding
upon her separate property, whether she was or was not in fact
possessed of or entitled to any separate property at the time
when she entered into such contract, that it should bind all
separate property which she might at any time or thereafter
be possessed of or entitled to, and that it should be enforceable
by process of law against all property which she might thereafter,
while discovert, be possessed of or entitled to. The act of 1907
enabled a married woman, without her husband, to dispose of
or join in disposing of, real or personal property held by her
solely or jointly as trustee or personal representative, in like
manner as if she were a feme sole. It also provided that a settlement
or agreement for settlement whether before or after
marriage, respecting the property of the woman, should not
be valid unless executed by her if she was of full age or confirmed
by her after she attained full age. The Married Women’s
Property Act 1908 removed a curious anomaly by enacting
that a married woman having separate property should be
equally liable with single women and widows for the maintenance
of parents who are in receipt of poor relief.

The British colonies generally have adopted the principles of
the English acts of 1882 and 1893.


Law of Scotland.—The law of Scotland differs less from English
law than the use of a very different terminology would lead us to
suppose. The phrase communio bonorum has been employed to
express the interest which the spouses have in the movable property
of both, but its use has been severely censured as essentially inaccurate
and misleading. It has been contended that there was no
real community of goods, and no partnership or societas between
the spouses. The wife’s movable property, with certain exceptions,
and subject to special agreements, became as absolutely the property
of the husband as it did in English law. The notion of a communio
was, however, favoured by the peculiar rights of the wife and children
on the dissolution of the marriage. Previous to the Intestate
Movable Succession (Scotland) Act 1855 the law stood as follows.
The fund formed by the movable property of both spouses may be
dealt with by the husband as he pleases during life; it is increased
by his acquisitions and diminished by his debts. The respective
shares contributed by husband and wife return on the dissolution of
the marriage to them or their representatives if the marriage be
dissolved within a year and a day, and without a living child. Otherwise
the division is into two or three shares, according as children are
existing or not at the dissolution of the marriage. On the death of
the husband, his children take one-third (called legitim), the widow
takes one-third (jus relictae), and the remaining one-third (the dead
part) goes according to his will or to his next of kin. If there be no
children, the jus relictae and the dead’s part are each one-half. If
the wife die before the husband, her representatives, whether children
or not, are creditors for the value of her share. The statute above-mentioned,
however, enacts that “where a wife shall predecease her
husband, the next of kin, executors or other representatives of such
wife, whether testate or intestate, shall have no right to any share of
the goods in communion; nor shall any legacy or bequest or testamentary
disposition thereof by such wife, affect or attach to the said
goods or any portion thereof.” It also abolishes the rule by which
the shares revert if the marriage does not subsist for a year and a day.
Several later acts apply to Scotland some of the principles of the
English Married Women’s Property Acts. These are the Married
Women’s Property (Scotland) Act 1877, which protects the earnings,
&c., of wives, and limits the husband’s liability for antenuptial debts
of the wife, the Married Women’s Policies of Assurance (Scotland)
Act 1880, which enables a woman to contract for a policy of assurance
for her separate use, and the Married Women’s Property (Scotland)
Act 1881, which abolished the jus mariti.

A wife’s heritable property does not pass to the husband on
marriage, but he acquires a right to the administration and profits.
His courtesy, as in English law, is also recognized. On the other
hand, a widow has a terce or life-rent of a third part of the husband’s
heritable estate, unless she has accepted a conventional provision.

Continental Europe.—Since 1882 English legislation in the matter
of married women’s property has progressed from perhaps the most
backward to the foremost place in Europe. By a curious contrast,
the only two European countries where, in the absence of a settlement
to the contrary, independence of the wife’s property was recognized,
were Russia and Italy. But there is now a marked tendency
towards contractual emancipation. Sweden adopted a law on this
subject in 1874, Denmark in 1880, Norway in 1888. Germany
followed, the Civil Code which came into operation in 1900 (Art.
1367) providing that the wife’s wages or earnings shall form part of
her Vorbehaltsgut or separate property, which a previous article

(1365) placed beyond the husband’s control. As regards property
accruing to the wife in Germany by succession, will or gift inter
vivos, it is only separate property where the donor has deliberately
stipulated exclusion of the husband’s right.

In France it seemed as if the system of community of property
was ingrained in the institutions of the country. But a law of 1907
has brought France into line with other countries. This law gives a
married woman sole control over earnings from her personal work
and savings therefrom. She can with such money acquire personalty
or realty, over the former of which she has absolute control. But
if she abuses her rights by squandering her money or administering
her property badly or imprudently the husband may apply to the
court to have her freedom restricted.

American Law.—In the United States, the revolt against the
common law theory of husband and wife was carried farther than in
England, and legislation early tended in the direction of absolute
equality between the sexes. Each state has, however, taken its
own way and selected its own time for introducing modifications of
the existing law, so that the legislation on this subject is now
exceedingly complicated and difficult. James Schouler (Law of
Domestic Relations) gives an account of the general result in the
different states to which reference may be made. The peculiar
system of Homestead Laws in many of the states (see Homestead
and Exemption Laws) constitutes an inalienable provision for the
wife and family of the householder.




 
1 Curtesy or courtesy has been explained by legal writers as
“arising by favour of the law of England.” The word has nothing
to do with courtesy in the sense of complaisance.





HUSHI (Rumanian Huşi), the capital of the department
of Falciu, Rumania; on a branch of the Jassy-Galatz railway,
9 m. W. of the river Pruth and the Russian frontier. Pop.
(1900) 15,404, about one-fourth being Jews. Hushi is an episcopal
see. The cathedral was built in 1491 by Stephen the Great of
Moldavia. There are no important manufactures, but a large
fair is held annually in September for the sale of live-stock,
and wine is produced in considerable quantities. Hushi is said
to have been founded in the 15th century by a colony of Hussites,
from whom its name is derived. The treaty of the Pruth between
Russia and Turkey was signed here in 1711.



HUSKISSON, WILLIAM (1770-1830), English statesman and
financier, was descended from an old Staffordshire family of
moderate fortune, and was born at Birch Moreton, Worcestershire,
on the 11th of March 1770. Having been placed in his
fourteenth year under the charge of his maternal great-uncle
Dr Gem, physician to the English embassy at Paris, in 1783
he passed his early years amidst a political fermentation which
led him to take a deep interest in politics. Though he approved
of the French Revolution, his sympathies were with the more
moderate party, and he became a member of the “club of 1789,”
instituted to support the new form of constitutional monarchy
in opposition to the anarchical attempts of the Jacobins. He
early displayed his mastery of the principles of finance by a
Discours delivered in August 1790 before this society, in regard
to the issue of assignats by the government. The Discours
gained him considerable reputation, but as it failed in its purpose
he withdrew from the society. In January 1793 he was appointed
by Dundas to an office created to direct the execution of the
Aliens Act; and in the discharge of his delicate duties he manifested
such ability that in 1795 he was appointed under-secretary
at war. In the following year he entered parliament as member for
Morpeth, but for a considerable period he took scarcely any part
in the debates. In 1800 he inherited a fortune from Dr Gem.
On the retirement of Pitt in 1801 he resigned office, and after
contesting Dover unsuccessfully he withdrew for a time into
private life. Having in 1804 been chosen to represent Liskeard,
he was on the restoration of the Pitt ministry appointed secretary
of the treasury, holding office till the dissolution of the ministry
after the death of Pitt in January 1806. After being elected
for Harwich in 1807, he accepted the same office under the duke
of Portland, but he withdrew from the ministry along with
Canning in 1809. In the following year he published a pamphlet
on the currency system, which confirmed his reputation as the
ablest financier of his time; but his free-trade principles did not
accord with those of his party. In 1812 he was returned for
Chichester. When in 1814 he re-entered the public service, it
was only as chief commissioner of woods and forests, but his
influence was from this time very great in the commercial and
financial legislation of the country. He took a prominent part
in the corn-law debates of 1814 and 1815; and in 1819 he
presented a memorandum to Lord Liverpool advocating a large
reduction in the unfunded debt, and explaining a method for
the resumption of cash payments, which was embodied in the
act passed the same year. In 1821 he was a member of the
committee appointed to inquire into the causes of the agricultural
distress then prevailing, and the proposed relaxation of the corn
laws embodied in the report was understood to have been chiefly
due to his strenuous advocacy. In 1823 he was appointed
president of the board of trade and treasurer of the navy, and
shortly afterwards he received a seat in the cabinet. In the
same year he was returned for Liverpool as successor to Canning,
and as the only man who could reconcile the Tory merchants
to a free trade policy. Among the more important legislative
changes with which he was principally connected were a reform
of the Navigation Acts, admitting other nations to a full equality
and reciprocity of shipping duties; the repeal of the labour laws;
the introduction of a new sinking fund; the reduction of the
duties on manufactures and on the importation of foreign goods,
and the repeal of the quarantine duties. In accordance with
his suggestion Canning in 1827 introduced a measure on the
corn laws proposing the adoption of a sliding scale to regulate
the amount of duty. A misapprehension between Huskisson
and the duke of Wellington led to the duke proposing an amendment,
the success of which caused the abandonment of the
measure by the government. After the death of Canning in the
same year Huskisson accepted the secretaryship of the colonies
under Lord Goderich, an office which he continued to hold in
the new cabinet formed by the duke of Wellington in the following
year. After succeeding with great difficulty in inducing the
cabinet to agree to a compromise on the corn laws, Huskisson
finally resigned office in May 1829 on account of a difference
with his colleagues in regard to the disfranchisement of East
Retford. On the 15th of September of the following year he was
accidentally killed by a locomotive engine while present at the
opening of the Liverpool and Manchester railway.


See the Life of Huskisson, by J. Wright (London, 1831).





HUSS (or Hus), JOHN (c. 1373-1415), Bohemian reformer and
martyr, was born at Hussinecz,1 a market village at the foot of
the Böhmerwald, and not far from the Bavarian frontier, between
1373 and 1375, the exact date being uncertain. His parents
appear to have been well-to-do Czechs of the peasant class.
Of his early life nothing is recorded except that, notwithstanding
the early loss of his father, he obtained a good elementary
education, first at Hussinecz, and afterwards at the neighbouring
town of Prachaticz. At, or only a very little beyond, the
usual age he entered the recently (1348) founded university of
Prague, where he became bachelor of arts in 1393, bachelor
of theology in 1394, and master of arts in 1396. In 1398
he was chosen by the Bohemian “nation” of the university
to an examinership for the bachelor’s degree; in the
same year he began to lecture also, and there is reason to
believe that the philosophical writings of Wycliffe, with which
he had been for some years acquainted, were his text-books.
In October 1401 he was made dean of the philosophical faculty,
and for the half-yearly period from October 1402 to April 1403
he held the office of rector of the university. In 1402 also he
was made rector or curate (capellarius) of the Bethlehem chapel,
which had in 1391 been erected and endowed by some zealous
citizens of Prague for the purpose of providing good popular
preaching in the Bohemian tongue. This appointment had
a deep influence on the already vigorous religious life of Huss
himself; and one of the effects of the earnest and independent
study of Scripture into which it led him was a profound conviction
of the great value not only of the philosophical but also of the
theological writings of Wycliffe.

This newly-formed sympathy with the English reformer did
not, in the first instance at least, involve Huss in any conscious
opposition to the established doctrines of Catholicism, or in
any direct conflict with the authorities of the church; and for

several years he continued to act in full accord with his archbishop
(Sbynjek, or Sbynko, of Hasenburg). Thus in 1405 he, with
other two masters, was commissioned to examine into certain
reputed miracles at Wilsnack, near Wittenberg, which had
caused that church to be made a resort of pilgrims from all parts
of Europe. The result of their report was that all pilgrimage
thither from the province of Bohemia was prohibited by the
archbishop on pain of excommunication, while Huss, with the
full sanction of his superior, gave to the world his first published
writing, entitled De Omni Sanguine Christi Glorificato, in which
he declaimed in no measured terms against forged miracles and
ecclesiastical greed, urging Christians at the same time to desist
from looking for sensible signs of Christ’s presence, but rather
to seek Him in His enduring word. More than once also Huss,
together with his friend Stanislaus of Znaim, was appointed
to be synod preacher, and in this capacity he delivered at the
provincial councils of Bohemia many faithful admonitions.
As early as the 28th of May 1403, it is true, there had been held
a university disputation about the new doctrines of Wycliffe,
which had resulted in the condemnation of certain propositions
presumed to be his; five years later (May 20, 1408) this decision
had been refined into a declaration that these, forty-five in
number, were not to be taught in any heretical, erroneous
or offensive sense. But it was only slowly that the growing
sympathy of Huss with Wycliffe unfavourably affected his
relations with his colleagues in the priesthood. In 1408, however,
the clergy of the city and archiepiscopal diocese of Prague laid
before the archbishop a formal complaint against Huss, arising
out of strong expressions with regard to clerical abuses of which
he had made use in his public discourses; and the result was
that, having been first deprived of his appointment as synodal
preacher, he was, after a vain attempt to defend himself in
writing, publicly forbidden the exercise of any priestly function
throughout the diocese. Simultaneously with these proceedings
in Bohemia, negotiations had been going on for the removal of
the long-continued papal schism, and it had become apparent
that a satisfactory solution could only be secured if, as seemed
not impossible, the supporters of the rival popes, Benedict XIII.
and Gregory XII., could be induced, in view of the approaching
council of Pisa, to pledge themselves to a strict neutrality.
With this end King Wenceslaus of Bohemia had requested the
co-operation of the archbishop and his clergy, and also the
support of the university, in both instances unsuccessfully,
although in the case of the latter the Bohemian “nation,” with
Huss at its head, had only been overborne by the votes of the
Bavarians, Saxons and Poles. There followed an expression
of nationalist and particularistic as opposed to ultramontane
and also to German feeling, which undoubtedly was of supreme
importance for the whole of the subsequent career of Huss. In
compliance with this feeling a royal edict (January 18, 1409)
was issued, by which, in alleged conformity with Paris usage,
and with the original charter of the university, the Bohemian
“nation” received three votes, while only one was allotted to
the other three “nations” combined; whereupon all the
foreigners, to the number of several thousands, almost immediately
withdrew from Prague, an occurrence which led to
the formation shortly afterwards of the university of Leipzig.

It was a dangerous triumph for Huss; for his popularity
at court and in the general community had been secured only
at the price of clerical antipathy everywhere and of much German
ill-will. Among the first results of the changed order of things
were on the one hand the election of Huss (October 1409) to be
again rector of the university, but on the other hand the appointment
by the archbishop of an inquisitor to inquire into charges
of heretical teaching and inflammatory preaching brought
against him. He had spoken disrespectfully of the church, it
was said, had even hinted that Antichrist might be found to
be in Rome, had fomented in his preaching the quarrel between
Bohemians and Germans, and had, notwithstanding all that
had passed, continued to speak of Wycliffe as both a pious man
and an orthodox teacher. The direct result of this investigation
is not known, but it is impossible to disconnect from it the
promulgation by Pope Alexander V., on the 20th of December
1409, of a bull which ordered the abjuration of all Wycliffite
heresies and the surrender of all his books, while at the same
time—a measure specially levelled at the pulpit of Bethlehem
chapel—all preaching was prohibited except in localities which
had been by long usage set apart for that use. This decree, as
soon as it was published in Prague (March 9, 1410), led to much
popular agitation, and provoked an appeal by Huss to the
pope’s better informed judgment; the archbishop, however,
resolutely insisted on carrying out his instructions, and in the
following July caused to be publicly burned, in the courtyard
of his own palace, upwards of 200 volumes of the writings of
Wycliffe, while he pronounced solemn sentence of excommunication
against Huss and certain of his friends, who had in the
meantime again protested and appealed to the new pope
(John XXIII.). Again the populace rose on behalf of their hero,
who, in his turn, strong in the conscientious conviction that “in
the things which pertain to salvation God is to be obeyed rather
than man,” continued uninterruptedly to preach in the Bethlehem
chapel, and in the university began publicly to defend the so-called
heretical treatises of Wycliffe, while from king and queen,
nobles and burghers, a petition was sent to Rome praying that
the condemnation and prohibition in the bull of Alexander V.
might be quashed. Negotiations were carried on for some months,
but in vain; in March 1411 the ban was anew pronounced upon
Huss as a disobedient son of the church, while the magistrates
and councillors of Prague who had favoured him were threatened
with a similar penalty in ease of their giving him a contumacious
support. Ultimately the whole city, which continued to harbour
him, was laid under interdict; yet he went on preaching, and
masses were celebrated as usual, so that at the date of Archbishop
Sbynko’s death in September 1411, it seemed as if the efforts of
ecclesiastical authority had resulted in absolute failure.

The struggle, however, entered on a new phase with the
appearance at Prague in May 1412 of the papal emissary charged
with the proclamation of the papal bulls by which a religious
war was decreed against the excommunicated King Ladislaus
of Naples, and indulgence was promised to all who should take
part in it, on terms similar to those which had been enjoyed
by the earlier crusaders to the Holy Land. By his bold and
thorough-going opposition to this mode of procedure against
Ladislaus, and still more by his doctrine that indulgence could
never be sold without simony, and could not be lawfully granted
by the church except on condition of genuine contrition and
repentance, Huss at last isolated himself, not only from the
archiepiscopal party under Albik of Unitschow, but also from
the theological faculty of the university, and especially from
such men as Stanislaus of Znaim and Stephen Paletz, who until
then had been his chief supporters. A popular demonstration,
in which the papal bulls had been paraded through the streets
with circumstances of peculiar ignominy and finally burnt, led
to intervention by Wenceslaus on behalf of public order; three
young men, for having openly asserted the unlawfulness of the
papal indulgence after silence had been enjoined, were sentenced
to death (June 1412); the excommunication against Huss was
renewed, and the interdict again laid on all places which should
give him shelter—a measure which now began to be more strictly
regarded by the clergy, so that in the following December
Huss had no alternative but to yield to the express wish of the
king by temporarily withdrawing from Prague. A provincial
synod, held at the instance of Wenceslaus in February 1413,
broke up without having reached any practical result; and
a commission appointed shortly afterwards also failed to bring
about a reconciliation between Huss and his adversaries. The
so-called heretic meanwhile spent his time partly at Kozihradek,
some 45 m. south of Prague, and partly at Krakowitz in
the immediate neighbourhood of the capital, occasionally
giving a course of open-air preaching, but finding his chief
employment in maintaining that copious correspondence of
which some precious fragments still are extant, and in the
composition of the treatise, De Ecclesia, which subsequently
furnished most of the material for the capital charges brought

against him, and was formerly considered the most important of
his works, though it is mainly a transcript of Wycliffe’s work
of the same name.

During the year 1413 the arrangements for the meeting of
a general council at Constance were agreed upon between
Sigismund and Pope John XXIII. The objects originally
contemplated had been the restoration of the unity of the church
and its reform in head and members; but so great had become
the prominence of Bohemian affairs that to these also a first
place in the programme of the approaching oecumenical assembly
required to be assigned, and for their satisfactory settlement
the presence of Huss was necessary. His attendance was accordingly
requested, and the invitation was willingly accepted
as giving him a long-wished-for opportunity both of publicly
vindicating himself from charges which he felt to be grievous,
and of loyally making confession for Christ. He set out from
Bohemia on the 14th of October 1414, not, however, until he
had carefully ordered all his private affairs, with a presentiment,
which he did not conceal, that in all probability he was going
to his death. The journey, which appears to have been undertaken
with the usual passport, and under the protection of
several powerful Bohemian friends (John of Chlum, Wenceslaus
of Duba, Henry of Chlum) who accompanied him, was a very
prosperous one; and at almost all the halting-places he was
received with a consideration and enthusiastic sympathy which
he had hardly expected to meet with anywhere in Germany.
On the 3rd of November he arrived at Constance; shortly afterwards
there was put into his hands the famous imperial “safe
conduct,” the promise of which had been one of his inducements
to quit the comparative security he had enjoyed in Bohemia.
This safe conduct, which had been frequently printed, stated
that Huss should, whatever judgment might be passed on him,
be allowed to return freely to Bohemia. This by no means
provided for his immunity from punishment. If faith to him
had not been broken he would have been sent back to Bohemia
to be punished by his sovereign, the king of Bohemia. The
treachery of King Sigismund is undeniable, and was indeed
admitted by the king himself. The safe conduct was probably
indeed given by him to entice Huss to Constance. On the 4th
of December the pope appointed a commission of three bishops to
investigate the case against the heretic, and to procure witnesses;
to the demand of Huss that he might be permitted to employ
an agent in his defence a favourable answer was at first given,
but afterwards even this concession to the forms of justice was
denied. While the commission was engaged in the prosecution
of its enquiries, the flight of Pope John XXIII. took place on
the 20th of March, an event which furnished a pretext for the
removal of Huss from the Dominican convent to a more secure
and more severe place of confinement under the charge of the
bishop of Constance at Gottlieben on the Rhine. On the 4th
of May the temper of the council on the doctrinal questions in
dispute was fully revealed in its unanimous condemnation of
Wycliffe, especially of the so-called “forty-five articles” as
erroneous, heretical, revolutionary. It was not, however, until
the 5th of June that the case of Huss came up for hearing; the
meeting, which was an exceptionally full one, took place in the
refectory of the Franciscan cloister. Autograph copies of his
work De Ecclesia and of the controversial tracts which he had
written against Paletz and Stanislaus of Znaim having been
acknowledged by him, the extracted propositions on which the
prosecution based their charge of heresy were read; but as
soon as the accused began to enter upon his defence, he was
assailed by violent outcries, amidst which it was impossible
for him to be heard, so that he was compelled to bring his speech
to an abrupt close, which he did with the calm remark: “In
such a council as this I had expected to find more propriety,
piety and order.” It was found necessary to adjourn the
sitting until the 7th of June, on which occasion the outward
decencies were better observed, partly no doubt from the circumstance
that Sigismund was present in person. The propositions
which had been extracted from the De Ecclesia were again brought
up, and the relations between Wycliffe and Huss were discussed,
the object of the prosecution being to fasten upon the latter the
charge of having entirely adopted the doctrinal system of the
former, including especially a denial of the doctrine of transubstantiation.
The accused repudiated the charge of having
abandoned the Catholic doctrine, while expressing hearty
admiration and respect for the memory of Wycliffe. Being
next asked to make an unqualified submission to the council,
he expressed himself as unable to do so, while stating his willingness
to amend his teaching wherever it had been shown to be
false. With this the proceedings of the day were brought to
a close. On the 8th of June the propositions extracted from
the De Ecclesia were again taken up with some fulness of detail;
some of these he repudiated as incorrectly given, others he
defended; but when asked to make a general recantation he
steadfastly declined, on the ground that to do so would be a
dishonest admission of previous guilt. Among the propositions
he could heartily abjure was that relating to transubstantiation;
among those he felt constrained unflinchingly to maintain
was one which had given great offence, to the effect that Christ,
not Peter, is the head of the church to whom ultimate appeal
must be made. The council, however, showed itself inaccessible
to all his arguments and explanations, and its final resolution,
as announced by Pierre d’Ailly, was threefold: first, that
Huss should humbly declare that he had erred in all the articles
cited against him; secondly, that he should promise on oath
neither to hold nor teach them in the future; thirdly, that
he should publicly recant them. On his declining to make
this submission he was removed from the bar. Sigismund
himself gave it as his opinion that it had been clearly proved
by many witnesses that the accused had taught many pernicious
heresies, and that even should he recant he ought never to be
allowed to preach or teach again or to return to Bohemia, but
that should he refuse recantation there was no remedy but the
stake. During the next four weeks no effort was spared to
shake the determination of Huss; but he steadfastly refused
to swerve from the path which conscience had once made clear.
“I write this,” says he, in a letter to his friends at Prague, “in
prison and in chains, expecting to-morrow to receive sentence
of death, full of hope in God that I shall not swerve from the
truth, nor abjure errors imputed to me by false witnesses.”
The sentence he expected was pronounced on the 6th of July
in the presence of Sigismund and a full sitting of the council;
once and again he attempted to remonstrate, but in vain, and
finally he betook himself to silent prayer. After he had undergone
the ceremony of degradation with all the childish formalities
usual on such occasions, his soul was formally consigned by all
those present to the devil, while he himself with clasped hands
and uplifted eyes reverently committed it to Christ. He was
then handed over to the secular arm, and immediately led to the
place of execution, the council meanwhile proceeding unconcernedly
with the rest of its business for the day. Many
incidents recorded in the histories make manifest the meekness,
fortitude and even cheerfulness with which he went to
his death. After he had been tied to the stake and the faggots
had been piled, he was for the last time urged to recant, but
his only reply was: “God is my witness that I have never
taught or preached that which false witnesses have testified
against me. He knows that the great object of all my preaching
and writing was to convert men from sin. In the truth of that
gospel which hitherto I have written, taught and preached,
I now joyfully die.” The fire was then kindled, and his voice
as it audibly prayed in the words of the “Kyrie Eleison” was
soon stifled in the smoke. When the flames had done their
office, the ashes that were left and even the soil on which they
lay were carefully removed and thrown into the Rhine.

Not many words are needed to convey a tolerably adequate
estimate of the character and work of the “pale thin man in
mean attire,” who in sickness and poverty thus completed the
forty-sixth year of a busy life at the stake. The value of Huss
as a scholar was formerly underrated. The publication of his
Super IV. Sententiarum has proved that he was a man of profound
learning. Yet his principal glory will always be founded on his

spiritual teaching. It might not be easy to formulate precisely
the doctrines for which he died, and certainly some of them,
as, for example, that regarding the church, were such as many
Protestants even would regard as unguarded and difficult to
harmonize with the maintenance of external church order;
but his is undoubtedly the honour of having been the chief intermediary
in handing on from Wycliffe to Luther the torch which
kindled the Reformation, and of having been one of the bravest of
the martyrs who have died in the cause of honesty and freedom,
of progress and of growth towards the light.

(J. S. Bl.)


The works of Huss are usually classed under four heads: the
dogmatical and polemical, the homiletical, the exegetical and the
epistolary. In the earlier editions of his works sufficient care was
not taken to distinguish between his own writings and those of
Wycliffe and others who were associated with him. In connexion
with his sermons it is worthy of note that by means of them and by
his public teaching generally Huss exercised a considerable influence
not only on the religious life of his time, but on the literary development
of his native tongue. The earliest collected edition of his
works, Historia et monumenta Joannis Hus et Hieronymi Pragensis,
was published at Nuremberg in 1558 and was reprinted with a considerable
quantity of new matter at Frankfort in 1715. A Bohemian
edition of the works has been edited by K. J. Erben (Prague, 1865-1868),
and the Documenta J. Hus vitam, doctrinam, causam in
Constantiensi concilio (1869), edited by F. Palacky, is very valuable.
More recently Joannis Hus. Opera omnia have been edited by W.
Flojšhaus (Prague, 1904 fol.). The De Ecclesia was published by
Ulrich von Hutten in 1520; other controversial writings by Otto
Brumfels in 1524; and Luther wrote an interesting preface to
Epistolae Quaedam, which were published in 1537. These Epistolae
have been translated into French by E. de Bonnechose (1846), and
the letters written during his imprisonment have been edited by
C. von Kügelgen (Leipzig, 1902).

The best and most easily accessible information for the English
reader on Huss is found in J. A. W. Neander’s Allgemeine Geschichte
der christlichen Religion und Kirche, translated by J. Torrey (1850-1858);
in G. von Lechler’s Wiclif und die Vorgeschichte der Reformation,
translated by P. Lorimer (1878); in H. H. Milman’s History of
Latin Christianity, vol. viii. (1867); and in M. Creighton’s History of
the Papacy (1897). Among the earlier authorities is the Historia
Bohemica of Aeneas Sylvius (1475). The Acta of the council of
Constance (published by P. Labbe in his Concilia, vol. xvi., 1731; by
H. von der Haardt in his Magnum Constantiense concilium, vol. vi.,
1700; and by H. Finke in his Acta concilii Constantiensis, 1896);
and J. Lenfant’s Histoire de la guerre des Hussites (1731) and the same
writer’s Histoire du concile de Constance (1714) should be consulted.
F. Palacky’s Geschichte Böhmens (1864-1867) is also very useful.
Monographs on Huss are very numerous. Among them may be
mentioned J. A. von Helfert, Studien über Hus und Hieronymus
(1853; this work is ultramontane in its sympathies); C. von Höfler,
Hus und der Abzug der deutschen Professoren und Studenten aus Prag
(1864); W. Berger, Johannes Hus und König Sigmund (1871);
E. Denis, Huss et la guerre des Hussites (1878); P. Uhlmann, König
Sigmunds Geleit für Hus (1894); J. Loserth, Hus und Wiclif (1884),
translated into English by M. J. Evans (1884); A. Jeep, Gerson,
Wiclefus, Hussus, inter se comparati (1857); and G. von Lechler,
Johannes Hus (1889). See also Count Lützow, The Life and Times of
John Hus (London, 1909).




 
1 From which the name Huss, or more properly Hus, an abbreviation
adopted by himself about 1396, is derived. Prior to that date
he was invariably known as Johann Hussynecz, Hussinecz, Hussenicz
or de Hussynecz.





HUSSAR, originally the name of a soldier belonging to a
corps of light horse raised by Matthias Corvinus, king of Hungary,
in 1458, to fight against the Turks. The Magyar huszar, from
which the word is derived, was formerly connected with the
Magyar husz, twenty, and was explained by a supposed raising
of the troops by the taking of each twentieth man. According
to the New English Dictionary the word is an adaptation of
the Italian corsaro, corsair, a robber, and is found in 15th-century
documents coupled with praedones. The hussar was the typical
Hungarian cavalry soldier, and, in the absence of good light
cavalry in the regular armies of central and western Europe,
the name and character of the hussars gradually spread into
Prussia, France, &c. Frederick the Great sent Major H. J. von
Zieten to study the work of this type of cavalry in the Austrian
service, and Zieten so far improved on the Austrian model that
he defeated his old teacher, General Baranyai, in an encounter
between the Prussian and Austrian hussars at Rothschloss in
1741. The typical uniform of the Hungarian hussar was followed
with modifications in other European armies. It consisted of
a busby or a high cylindrical cloth cap, jacket with heavy
braiding, and a dolman or pelisse, a loose coat worn hanging
from the left shoulder. The hussar regiments of the British
army were converted from light dragoons at the following dates:
7th (1805), 10th and 15th (1806), 18th (1807, and again on
revival after disbandment, 1858), 8th (1822), 11th (1840), 20th
(late 2nd Bengal European Cavalry) (1860), 13th, 14th, and 19th
(late 1st Bengal European Cavalry) (1861). The 21st Lancers
were hussars from 1862 to 1897.



HUSSITES, the name given to the followers of John Huss
(1369-1415), the Bohemian reformer. They were at first often
called Wycliffites, as the theological theories of Huss were largely
founded on the teachings of Wycliffe. Huss indeed laid more
stress on church reform than on theological controversy. On
such matters he always writes as a disciple of Wycliffe. The
Hussite movement may be said to have sprung from three
sources, which are however closely connected. Bohemia, which
had first received Christianity from the East, was from geographical
and other causes long but very loosely connected
with the Church of Rome. The connexion became closer at the
time when the schism with its violent controversies between
the rival pontiffs, waged with the coarse invective customary
to medieval theologians, had brought great discredit on the
papacy. The terrible rapacity of its representatives in Bohemia,
which increased in proportion as it became more difficult to
obtain money from western countries such as England and France,
caused general indignation; and this was still further intensified
by the gross immorality of the Roman priests. The Hussite
movement was also a democratic one, an uprising of the peasantry
against the landowners at a period when a third of the soil
belonged to the clergy. Finally national enthusiasm for the
Slavic race contributed largely to its importance. The towns,
in most cases creations of the rulers of Bohemia who had called
in German immigrants, were, with the exception of the “new
town” of Prague, mainly German; and in consequence of the
regulations of the university, Germans also held almost all the
more important ecclesiastical offices—a condition of things
greatly resented by the natives of Bohemia, which at this period
had reached a high degree of intellectual development.

The Hussite movement assumed a revolutionary character
as soon as the news of the death of Huss reached Prague. The
knights and nobles of Bohemia and Moravia, who were in favour
of church reform, sent to the council at Constance (September
2nd, 1415) a protest, known as the “protestatio Bohemorum”
which condemned the execution of Huss in the strongest language.
The attitude of Sigismund, king of the Romans, who sent
threatening letters to Bohemia declaring that he would shortly
“drown all Wycliffites and Hussites,” greatly incensed the
people. Troubles broke out in various parts of Bohemia, and
many Romanist priests were driven from their parishes. Almost
from the first the Hussites were divided into two sections, though
many minor divisions also arose among them. Shortly before
his death Huss had accepted a doctrine preached during his
absence by his adherents at Prague, namely that of “utraquism,”
i.e. the obligation of the faithful to receive communion in both
kinds (sub utraque specie). This doctrine became the watchword
of the moderate Hussites who were known as the Utraquists
or Calixtines (calix, the chalice), in Bohemian, podoboji; while
the more advanced Hussites were soon known as the Taborites,
from the city of Tabor that became their centre.

Under the influence of his brother Sigismund, king of the
Romans, King Wenceslaus endeavoured to stem the Hussite
movement. A certain number of Hussites lead by Nicolas of
Hus—no relation of John Huss—left Prague. They held meetings
in various parts of Bohemia, particularly at Usti, near the spot
where the town of Tabor was founded soon afterwards. At
these meetings Sigismund was violently denounced, and the people
everywhere prepared for war. In spite of the departure of many
prominent Hussites the troubles at Prague continued. On
the 30th of July 1419, when a Hussite procession headed by the
priest John of Želivo (in Ger. Selau) marched through the streets
of Prague, stones were thrown at the Hussites from the windows
of the town-hall of the “new town.” The people, headed by
John Žižka (1376-1424), threw the burgomaster and several
town-councillors, who were the instigators of this outrage,
from the windows and they were immediately killed by the

crowd. On hearing this news King Wenceslaus was seized with
an apoplectic fit, and died a few days afterwards. The death of
the king resulted in renewed troubles in Prague and in almost
all parts of Bohemia. Many Romanists, mostly Germans—for
they had almost all remained faithful to the papal cause—were
expelled from the Bohemian cities. In Prague, in November
1419, severe fighting took place between the Hussites and the
mercenaries whom Queen Sophia (widow of Wenceslaus and
regent after the death of her husband) had hurriedly collected.
After a considerable part of the city had been destroyed a truce
was concluded on the 13th of November. The nobles, who
though favourable to the Hussite cause yet supported the
regent, promised to act as mediators with Sigismund; while
the citizens of Prague consented to restore to the royal forces
the castle of Vyšehrad, which had fallen into their hands. Žižka,
who disapproved of this compromise, left Prague and retired
to Plzeň (Pilsen). Unable to maintain himself there he marched
to southern Bohemia, and after defeating the Romanists at
Sudoměř—the first pitched battle of the Hussite wars—he
arrived at Usti, one of the earliest meeting-places of the Hussites.
Not considering its situation sufficiently strong, he moved to
the neighbouring new settlement of the Hussites, to which the
biblical name of Tabor was given. Tabor soon became the
centre of the advanced Hussites, who differed from the Utraquists
by recognizing only two sacraments—Baptism and Communion—and
by rejecting most of the ceremonial of the Roman Church.
The ecclesiastical organization of Tabor had a somewhat puritanic
character, and the government was established on a thoroughly
democratic basis. Four captains of the people (hejtmane) were
elected, one of whom was Žižka; and a very strictly military
discipline was instituted.

Sigismund, king of the Romans, had, by the death of his
brother Wenceslaus without issue, acquired a claim on the
Bohemian crown; though it was then, and remained till much
later, doubtful whether Bohemia was an hereditary or an elective
monarchy. A firm adherent of the Church of Rome, Sigismund
was successful in obtaining aid from the pope. Martin V.
issued a bull on the 17th of March 1420 which proclaimed a
crusade “for the destruction of the Wycliffites, Hussites and all
other heretics in Bohemia.” The vast army of crusaders, with
which were Sigismund and many German princes, and which
consisted of adventurers attracted by the hope of pillage from
all parts of Europe, arrived before Prague on the 30th of June
and immediately began the siege of the city, which had, however,
soon to be abandoned (see Žižka, John). Negotiations took
place for a settlement of the religious differences. The united
Hussites formulated their demands in a statement known as
the “articles of Prague.” This document, the most important
of the Hussite period, runs thus in the wording of the contemporary
chronicler, Laurence of Brezova:—


I. The word of God shall be preached and made known in the
kingdom of Bohemia freely and in an orderly manner by the priests
of the Lord....

II. The sacrament of the most Holy Eucharist shall be freely
administered in the two kinds, that is bread and wine, to all the
faithful in Christ who are not precluded by mortal sin—according
to the word and disposition of Our Saviour.

III. The secular power over riches and worldly goods which the
clergy possesses in contradiction to Christ’s precept, to the prejudice
of its office and to the detriment of the secular arm, shall be taken
and withdrawn from it, and the clergy itself shall be brought back to
the evangelical rule and an apostolic life such as that which Christ
and his apostles led....

IV. All mortal sins, and in particular all public and other disorders,
which are contrary to God’s law shall in every rank of life
be duly and judiciously prohibited and destroyed by those whose
office it is.



These articles, which contain the essence of the Hussite doctrine,
were rejected by Sigismund, mainly through the influence
of the papal legates, who considered them prejudicial to the
authority of the Roman see. Hostilities therefore continued.
Though Sigismund had retired from Prague, the castles of
Vyšehrad and Hradčany remained in possession of his troops.
The citizens of Prague laid siege to the Vyšehrad, and towards
the end of October (1420) the garrison was on the point of
capitulating through famine. Sigismund attempted to relieve
the fortress, but was decisively defeated by the Hussites on
the 1st of November near the village of Pankrác. The castles
of Vyšehrad and Hradčany now capitulated, and shortly afterwards
almost all Bohemia fell into the hands of the Hussites.
Internal troubles prevented them from availing themselves
completely of their victory. At Prague a demagogue, the
priest John of Želivo, for a time obtained almost unlimited
authority over the lower classes of the townsmen; and at
Tabor a communistic movement (that of the so-called Adamites)
was sternly suppressed by Žižka. Shortly afterwards a new
crusade against the Hussites was undertaken. A large German
army entered Bohemia, and in August 1421 laid siege to the
town of Zatec (Saaz). The crusaders hoped to be joined in
Bohemia by King Sigismund, but that prince was detained
in Hungary. After an unsuccessful attempt to storm Zatec
the crusaders retreated somewhat ingloriously, on hearing
that the Hussite troops were approaching. Sigismund only
arrived in Bohemia at the end of the year 1421. He took
possession of the town of Kutna Hora (Kuttenberg), but was
decisively defeated by Žižka at Německy Brod (Deutschbrod)
on the 6th of January 1422. Bohemia was now again for a
time free from foreign intervention, but internal discord again
broke out caused partly by theological strife, partly by the
ambition of agitators. John of Želivo was on the 9th of March
1422 arrested by the town council of Prague and decapitated.
There were troubles at Tabor also, where a more advanced
party opposed Žižka’s authority. Bohemia obtained a temporary
respite when, in 1422, Prince Sigismund Korybutovič of Poland
became for a short time ruler of the country. His authority
was recognized by the Utraquist nobles, the citizens of Prague,
and the more moderate Taborites, including Žižka. Korybutovič,
however, remained but a short time in Bohemia; after his
departure civil war broke out, the Taborites opposing in arms
the more moderate Utraquists, who at this period are also
called by the chroniclers the “Praguers,” as Prague was their
principal stronghold. On the 27th of April 1423, Žižka now
again leading, the Taborites defeated at Horic the Utraquist
army under Čenek of Wartemberg; shortly afterwards an
armistice was concluded at Konopišt.

Papal influence had meanwhile succeeded in calling forth
a new crusade against Bohemia, but it resulted in complete failure.
In spite of the endeavours of their rulers, the Slavs of Poland
and Lithuania did not wish to attack the kindred Bohemians;
the Germans were prevented by internal discord from taking
joint action against the Hussites; and the king of Denmark,
who had landed in Germany with a large force intending to
take part in the crusade, soon returned to his own country.
Free for a time from foreign aggression, the Hussites invaded
Moravia, where a large part of the population favoured their
creed; but, again paralysed by dissensions, soon returned
to Bohemia. The city of Königgrätz (Králové Hradec), which
had been under Utraquist rule, espoused the doctrine of Tabor,
and called Žižka to its aid. After several military successes
gained by Žižka (q.v.) in 1423 and the following year, a treaty
of peace between the Hussites was concluded on the 13th of
September 1424 at Liben, a village near Prague, now part of
that city.

In 1426 the Hussites were again attacked by foreign enemies.
In June of that year their forces, led by Prokop the Great—who
took the command of the Taborites shortly after Žižka’s
death in October 1424—and Sigismund Korybutovič, who had
returned to Bohemia, signally defeated the Germans at Aussig
(Usti nad Labem). After this great victory, and another at
Tachau in 1427, the Hussites repeatedly invaded Germany,
though they made no attempt to occupy permanently any part
of the country.

The almost uninterrupted series of victories of the Hussites
now rendered vain all hope of subduing them by force of arms.
Moreover, the conspicuously democratic character of the Hussite
movement caused the German princes, who were afraid that

such views might extend to their own countries, to desire peace.
Many Hussites, particularly the Utraquist clergy, were also in
favour of peace. Negotiations for this purpose were to take
place at the oecumenical council which had been summoned to
meet at Basel on the 3rd of March 1431. The Roman see reluctantly
consented to the presence of heretics at this council,
but indignantly rejected the suggestion of the Hussites that
members of the Greek Church, and representatives of all Christian
creeds, should also be present. Before definitely giving its consent
to peace negotiations, the Roman Church determined on making
a last effort to reduce the Hussites to subjection. On the 1st
of August 1431 a large army of crusaders, under Frederick,
margrave of Brandenburg, whom Cardinal Cesarini accompanied
as papal legate, crossed the Bohemian frontier; on the 14th
of August it reached the town of Domažlice (Tauss); but on
the arrival of the Hussite army under Prokop the crusaders
immediately took to flight, almost without offering resistance.

On the 15th of October the members of the council, who had
already assembled at Basel, issued a formal invitation to the
Hussites to take part in its deliberations. Prolonged negotiations
ensued; but finally a Hussite embassy, led by Prokop and
including John of Rokycan, the Taborite bishop Nicolas of
Pelhřimov, the “English Hussite,” Peter Payne and many
others, arrived at Basel on the 4th of January 1433. It was
found impossible to arrive at an agreement. Negotiations
were not, however, broken off; and a change in the political
situation of Bohemia finally resulted in a settlement. In 1434
war again broke out between the Utraquists and the Taborites.
On the 30th of May of that year the Taborite army, led by Prokop
the Great and Prokop the Less, who both fell in the battle,
was totally defeated and almost annihilated at Lipan. The
moderate party thus obtained the upper hand; and it formulated
its demands in a document which was finally accepted by the
Church of Rome in a slightly modified form, and which is known
as “the compacts.” The compacts, mainly founded on the
articles of Prague, declare that:—


1. The Holy Sacrament is to be given freely in both kinds to all
Christians in Bohemia and Moravia, and to those elsewhere who
adhere to the faith of these two countries.

2. All mortal sins shall be punished and extirpated by those whose
office it is so to do.

3. The word of God is to be freely and truthfully preached by the
priests of the Lord, and by worthy deacons.

4. The priests in the time of the law of grace shall claim no ownership
of worldly possessions.



On the 5th of July 1436 the compacts were formally accepted
and signed at Iglau, in Moravia, by King Sigismund, by the
Hussite delegates, and by the representatives of the Roman
Church. The last-named, however, refused to recognize as
archbishop of Prague, John of Rokycan, who had been elected
to that dignity by the estates of Bohemia. The Utraquist
creed, frequently varying in its details, continued to be that
of the established church of Bohemia till all non-Roman religious
services were prohibited shortly after the battle of the White
Mountain in 1620. The Taborite party never recovered from
its defeat at Lipan, and after the town of Tabor had been captured
by George of Poděbrad in 1452 Utraquist religious worship was
established there. The Bohemian brethren, whose intellectual
originator was Peter Chelčicky, but whose actual founders
were Brother Gregory, a nephew of Archbishop Rokycan,
and Michael, curate of Zamberk, to a certain extent continued
the Taborite traditions, and in the 15th and 16th centuries
included most of the strongest opponents of Rome in Bohemia.
J. A. Komensky (Comenius), a member of the brotherhood,
claimed for the members of his church that they were the genuine
inheritors of the doctrines of Hus. After the beginning of the
German Reformation many Utraquists adopted to a large
extent the doctrines of Luther and Calvin; and in 1567 obtained
the repeal of the compacts, which no longer seemed sufficiently
far-reaching. From the end of the 16th century the inheritors
of the Hussite tradition in Bohemia were included in the more
general name of “Protestants” borne by the adherents of the
Reformation.


All histories of Bohemia devote a large amount of space to the
Hussite movement. See Count Lützow, Bohemia; an Historical
Sketch (London, 1896); Palacky, Geschichte von Böhmen; Bachmann,
Geschichte Böhmens; L. Krummel, Geschichte der böhmischen
Reformation (Gotha, 1866) and Utraquisten und Taboriten (Gotha,
1871); Ernest Denis, Huss et la guerre des Hussites (Paris, 1878);
H. Toman, Husitské Válečnictvi (Prague, 1898).



(L.)



HUSTING (O. Eng. hústing, from Old Norwegian hústhing),
the “thing” or “ting,” i.e. assembly, of the household of
personal followers or retainers of a king, earl or chief, contrasted
with the “folkmoot,” the assembly of the whole people. “Thing”
meant an inanimate object, the ordinary meaning at the present
day, also a cause or suit, and an assembly; a similar development
of meaning is found in the Latin res. The word still
appears in the names of the legislative assemblies of Norway,
the Storthing and of Iceland, the Althing. “Husting,” or
more usually in the plural “hustings,” was the name of a court
of the city of London. This court was formerly the county
court for the city and was held before the lord mayor, the
sheriffs and aldermen, for pleas of land, common pleas and
appeals from the sheriffs. It had probate jurisdiction and wills
were registered. All this jurisdiction has long been obsolete,
but the court still sits occasionally for registering gifts made to
the city. The charter of Canute (1032) contains a reference
to “hustings” weights, which points to the early establishment
of the court. It is doubtful whether courts of this name were
held in other towns, but John Cowell (1554-1611) in his Interpreter
(1601) s.v., “Hustings,” says that according to Fleta there
were such courts at Winchester, York, Lincoln, Sheppey and
elsewhere, but the passage from Fleta, as the New English
Dictionary points out, does not necessarily imply this (11. lv.
Habet etiam Rex curiam in civitatibus ... et in locis ...
sicut in Hustingis London, Winton, &c.). The ordinary use
of “hustings” at the present day for the platform from which
a candidate speaks at a parliamentary or other election, or
more widely for a political candidate’s election campaign, is
derived from the application of the word, first to the platform
in the Guildhall on which the London court was held, and next
to that from which the public nomination of candidates for a
parliamentary election was formerly made, and from which
the candidate addressed the electors. The Ballot Act of 1872
did away with this public declaration of the nomination.



HUSUM, a town in the Prussian province of Schleswig-Holstein,
in a fertile district 21⁄2 m. inland from the North Sea, on the
canalized Husumer Au, which forms its harbour and roadstead,
99 m. N.W. from Hamburg on a branch line from Tönning.
Pop. (1900) 8268. It has steam communication with the
North Frisian Islands (Nordstrand, Föhr and Sylt), and is a
port for the cattle trade with England. Besides a ducal palace
and park, it possesses an Evangelical church and a gymnasium.
Cattle markets are held weekly, and in them, as also in cereals,
a lively export trade is done. There are also extensive oyster
fisheries, the property of the state, the yield during the season
being very considerable. Husum is the birthplace of Johann
Georg Forchhammer (1794-1865), the mineralogist, Peter
Wilhelm Forchhammer (1801-1894), the archaeologist, and
Theodore Storm (1817-1888), the poet, to the last of whom a
monument has been erected here.

Husum is first mentioned in 1252, and its first church was
built in 1431. Wisby rights were granted it in 1582, and in
1603 it received municipal privileges from the duke of Holstein.
It suffered greatly from inundations in 1634 and 1717.


See Christiansen, Die Geschichte Husums (Husum, 1903); and
Henningsen, Das Stiftungsbuch der Stadt Husum (Husum, 1904).





HUTCHESON, FRANCIS (1694-1746), English philosopher,
was born on the 8th of August 1694. His birthplace was probably
the townland of Drumalig, in the parish of Saintfield and county
of Down, Ireland.1 Though the family had sprung from Ayrshire,
in Scotland, both his father and grandfather were ministers
of dissenting congregations in the north of Ireland. Hutcheson
was educated partly by his grandfather, partly at an academy,
where according to his biographer, Dr Leechman, he was taught

“the ordinary scholastic philosophy which was in vogue in
those days.” In 1710 he entered the university of Glasgow,
where he spent six years, at first in the study of philosophy,
classics and general literature, and afterwards in the study
of theology. On quitting the university, he returned to the
north of Ireland, and received a licence to preach. When,
however, he was about to enter upon the pastorate of a small
dissenting congregation he changed his plans on the advice
of a friend and opened a private academy in Dublin. In Dublin
his literary attainments gained him the friendship of many
prominent inhabitants. Among these was Archbishop King
(author of the De origine mali), who resisted all attempts to
prosecute Hutcheson in the archbishop’s court for keeping a
school without the episcopal licence. Hutcheson’s relations
with the clergy of the Established Church, especially with the
archbishops of Armagh and Dublin, Hugh Boulter (1672-1742)
and William King (1650-1729), seem to have been most cordial,
and his biographer, in speaking of “the inclination of his friends
to serve him, the schemes proposed to him for obtaining promotion,”
&c., probably refers to some offers of preferment, on
condition of his accepting episcopal ordination. These offers,
however, were unavailing.

While residing in Dublin, Hutcheson published anonymously
the four essays by which he is best known, namely, the Inquiry
concerning Beauty, Order, Harmony and Design, the Inquiry concerning
Moral Good and Evil, in 1725, the Essay on the Nature
and Conduct of the Passions and Affections and Illustrations
upon the Moral Sense, in 1728. The alterations and additions
made in the second edition of these Essays were published in a
separate form in 1726. To the period of his Dublin residence
are also to be referred the Thoughts on Laughter (a criticism of
Hobbes) and the Observations on the Fable of the Bees, being
in all six letters contributed to Hibernicus’ Letters, a periodical
which appeared, in Dublin (1725-1727, 2nd ed. 1734). At the end
of the same period occurred the controversy in the London
Journal with Gilbert Burnet (probably the second son of Dr
Gilbert Burnet, bishop of Salisbury); on the “True Foundation
of Virtue or Moral Goodness.” All these letters were collected
in one volume (Glasgow, 1772).

In 1729 Hutcheson succeeded his old master, Gershom
Carmichael, in the chair of moral philosophy in the university
of Glasgow. It is curious that up to this time all his essays
and letters had been published anonymously, though their
authorship appears to have been well known. In 1730 he
entered on the duties of his office, delivering an inaugural lecture
(afterwards published), De naturali hominum socialitate.
It was a great relief to him after the drudgery of school work
to secure leisure for his favourite studies; “non levi igitur
laetitia commovebar cum almam matrem Academiam me,
suum olim alumnum, in libertatem asseruisse audiveram.”
Yet the works on which Hutcheson’s reputation rests had
already been published.

The remainder of his life he devoted to his professorial
duties. His reputation as a teacher attracted many young
men, belonging to dissenting families, from England and Ireland,
and he enjoyed a well-deserved popularity among both his
pupils and his colleagues. Though somewhat quick-tempered,
he was remarkable for his warm feelings and generous impulses.
He was accused in 1738 before the Glasgow presbytery for
“following two false and dangerous doctrines: first, that the
standard of moral goodness was the promotion of the happiness
of others; and second, that we could have a knowledge of good
and evil without and prior to a knowledge of God” (Rae, Life
of Adam Smith, 1895). The accusation seems to have had no
result.

In addition to the works named, the following were published
during Hutcheson’s lifetime: a pamphlet entitled Considerations
on Patronage (1735); Philosophiae moralis institutio compendiaria,
ethices et jurisprudentiae naturalis elementa continens,
lib. iii. (Glasgow, 1742); Metaphysicae synopsis ontologiam
et pneumatologiam complectens (Glasgow, 1742). The last
work was published anonymously. After his death, his son,
Francis Hutcheson (c. 1722-1773), author of a number of
popular songs (e.g. “As Colin one evening,” “Jolly Bacchus,”
“Where Weeping Yews”), published much the longest, though
by no means the most interesting, of his works, A System of
Moral Philosophy, in Three Books (2 vols., London, 1755). To this
is prefixed a life of the author, by Dr William Leechman (1706-1785),
professor of divinity in the university of Glasgow. The
only remaining work assigned to Hutcheson is a small treatise on
Logic (Glasgow, 1764). This compendium, together with the Compendium
of Metaphysics, was republished at Strassburg in 1722.

Thus Hutcheson dealt with metaphysics, logic and ethics.
His importance is, however, due almost entirely to his ethical
writings, and among these primarily to the four essays and the
letters published during his residence in Dublin. His standpoint
has a negative and a positive aspect; he is in strong opposition
to Thomas Hobbes and Bernard de Mandeville, and in fundamental
agreement with Shaftesbury (Anthony Ashley Cooper,
3rd earl of Shaftesbury), whose name he very properly coupled
with his own on the title-page of the first two essays. There
are no two names, perhaps, in the history of English moral
philosophy, which stand in a closer connexion. The analogy
drawn between beauty and virtue, the functions assigned to
the moral sense, the position that the benevolent feelings form
an original and irreducible part of our nature, and the unhesitating
adoption of the principle that the test of virtuous action is its
tendency to promote the general welfare are obvious and fundamental
points of agreement between the two authors.


I. Ethics.—According to Hutcheson, man has a variety of senses,
internal as well as external, reflex as well as direct, the general
definition of a sense being “any determination of our minds to receive
ideas independently on our will, and to have perceptions of pleasure
and pain” (Essay on the Nature and Conduct of the Passions, sect. 1).
He does not attempt to give an exhaustive enumeration of these
“senses,” but, in various parts of his works, he specifies, besides the
five external senses commonly recognized (which, he rightly hints,
might be added to),—(1) consciousness, by which each man has a
perception of himself and of all that is going on in his own mind
(Metaph. Syn. pars i. cap. 2); (2) the sense of beauty (sometimes
called specifically “an internal sense”); (3) a public sense, or sensus
communis, “a determination to be pleased with the happiness of
others and to be uneasy at their misery”; (4) the moral sense, or
“moral sense of beauty in actions and affections, by which we
perceive virtue or vice, in ourselves or others”; (5) a sense of honour,
or praise and blame, “which makes the approbation or gratitude of
others the necessary occasion of pleasure, and their dislike, condemnation
or resentment of injuries done by us the occasion of that
uneasy sensation called shame”; (6) a sense of the ridiculous. It
is plain, as the author confesses, that there may be “other perceptions,
distinct from all these classes,” and, in fact, there seems to be
no limit to the number of “senses” in which a psychological division
of this kind might result.

Of these “senses” that which plays the most important part in
Hutcheson’s ethical system is the “moral sense.” It is this which
pronounces immediately on the character of actions and affections,
approving those which are virtuous, and disapproving those which
are vicious. “His principal design,” he says in the preface to the
two first treatises, “is to show that human nature was not left quite
indifferent in the affair of virtue, to form to itself observations concerning
the advantage or disadvantage of actions, and accordingly to
regulate its conduct. The weakness of our reason, and the avocations
arising from the infirmity and necessities of our nature, are so great
that very few men could ever have formed those long deductions of
reasons which show some actions to be in the whole advantageous
to the agent, and their contraries pernicious. The Author of nature
has much better furnished us for a virtuous conduct than our
moralists seem to imagine, by almost as quick and powerful instructions
as we have for the preservation of our bodies. He has made
virtue a lovely form, to excite our pursuit of it, and has given us
strong affections to be the springs of each virtuous action.” Passing
over the appeal to final causes involved in this and similar passages,
as well as the assumption that the “moral sense” has had no growth
or history, but was “implanted” in man exactly in the condition in
which it is now to be found among the more civilized races, an
assumption common to the systems of both Hutcheson and Butler,
it may be remarked that this use of the term “sense” has a tendency
to obscure the real nature of the process which goes on in an act of
moral judgment. For, as is so clearly established by Hume, this act
really consists of two parts: one an act of deliberation, more or less
prolonged, resulting in an intellectual judgment; the other a reflex
feeling, probably instantaneous, of satisfaction at actions which we
denominate good, of dissatisfaction at those which we denominate bad.
By the intellectual part of this process we refer the action or habit
to a certain class; but no sooner is the intellectual process completed

than there is excited in us a feeling similar to that which myriads of
actions and habits of the same class, or deemed to be of the same
class, have excited in us on former occasions. Now, supposing the
latter part of this process to be instantaneous, uniform and exempt
from error, the former certainly is not. All mankind may, apart from
their selfish interests, approve that which is virtuous or makes for
the general good, but surely they entertain the most widely divergent
opinions, and, in fact, frequently arrive at directly opposite conclusions
as to particular actions and habits. This obvious distinction
is undoubtedly recognized by Hutcheson in his analysis of the mental
process preceding moral action, nor does he invariably ignore it,
even when treating of the moral approbation or disapprobation which
is subsequent on action. None the less, it remains true that
Hutcheson, both by his phraseology, and by the language in which he
describes the process of moral approbation, has done much to favour
that loose, popular view of morality which, ignoring the necessity of
deliberation and reflection, encourages hasty resolves and unpremeditated
judgments. The term “moral sense” (which, it may be
noticed, had already been employed by Shaftesbury, not only, as Dr
Whewell appears to intimate, in the margin, but also in the text of his
Inquiry), if invariably coupled with the term “moral judgment,”
would be open to little objection; but, taken alone, as designating
the complex process of moral approbation, it is liable to lead not
only to serious misapprehension but to grave practical errors. For,
if each man’s decisions are solely the result of an immediate intuition
of the moral sense, why be at any pains to test, correct or review
them? Or why educate a faculty whose decisions are infallible?
And how do we account for differences in the moral decisions of
different societies, and the observable changes in a man’s own
views? The expression has, in fact, the fault of most metaphorical
terms: it leads to an exaggeration of the truth which it is intended
to suggest.

But though Hutcheson usually describes the moral faculty as
acting instinctively and immediately, he does not, like Butler, confound
the moral faculty with the moral standard. The test or
criterion of right action is with Hutcheson, as with Shaftesbury, its
tendency to promote the general welfare of mankind. He thus
anticipates the utilitarianism of Bentham—and not only in principle,
but even in the use of the phrase “the greatest happiness for the
greatest number” (Inquiry concerning Moral Good and Evil, sect. 3).

It is curious that Hutcheson did not realize the inconsistency of
this external criterion with his fundamental ethical principle. Intuition
has no possible connexion with an empirical calculation of
results, and Hutcheson in adopting such a criterion practically
denies his fundamental assumption.

As connected with Hutcheson’s virtual adoption of the utilitarian
standard may be noticed a kind of moral algebra, proposed for the
purpose of “computing the morality of actions.” This calculus
occurs in the Inquiry concerning Moral Good and Evil, sect. 3.

The most distinctive of Hutcheson’s ethical doctrines still remaining
to be noticed is what has been called the “benevolent theory” of
morals. Hobbes had maintained that all our actions, however
disguised under apparent sympathy, have their roots in
Benevolence.
self-love. Hutcheson not only maintains that benevolence
is the sole and direct source of many of our actions, but, by a not unnatural
recoil, that it is the only source of those actions of which, on
reflection, we approve. Consistently with this position, actions which
flow from self-love only are pronounced to be morally indifferent.
But surely, by the common consent of civilized men, prudence,
temperance, cleanliness, industry, self-respect and, in general, the
“personal virtues,” are regarded, and rightly regarded, as fitting
objects of moral approbation. This consideration could hardly escape
any author, however wedded to his own system, and Hutcheson
attempts to extricate himself from the difficulty by laying down the
position that a man may justly regard himself as a part of the rational
system, and may thus “be, in part, an object of his own benevolence”
(Ibid.),—a curious abuse of terms, which really concedes the
question at issue. Moreover, he acknowledges that, though self-love
does not merit approbation, neither, except in its extreme forms, does
it merit condemnation, indeed the satisfaction of the dictates of self-love
is one of the very conditions of the preservation of society. To
press home the inconsistencies involved in these various statements
would be a superfluous task.

The vexed question of liberty and necessity appears to be carefully
avoided in Hutcheson’s professedly ethical works. But, in the
Synopsis metaphysicae, he touches on it in three places, briefly
stating both sides of the question, but evidently inclining to that
which he designates as the opinion of the Stoics in opposition to
what he designates as the opinion of the Peripatetics. This is
substantially the same as the doctrine propounded by Hobbes and
Locke (to the latter of whom Hutcheson refers in a note), namely,
that our will is determined by motives in conjunction with our
general character and habit of mind, and that the only true liberty
is the liberty of acting as we will, not the liberty of willing as we will.
Though, however, his leaning is clear, he carefully avoids dogmatizing,
and deprecates the angry controversies to which the speculations
on this subject had given rise.

It is easy to trace the influence of Hutcheson’s ethical theories on
the systems of Hume and Adam Smith. The prominence given by
these writers to the analysis of moral action and moral approbation,
with the attempt to discriminate the respective provinces of the
reason and the emotions in these processes, is undoubtedly due to the
influence of Hutcheson. To a study of the writings of Shaftesbury
and Hutcheson we might, probably, in large measure, attribute the
unequivocal adoption of the utilitarian standard by Hume, and, if
this be the case, the name of Hutcheson connects itself, through
Hume, with the names of Priestley, Paley and Bentham. Butler’s
Sermons appeared in 1726, the year after the publication of
Hutcheson’s two first essays, and the parallelism between the
“conscience” of the one writer and the “moral sense” of the other
is, at least, worthy of remark.

II. Mental Philosophy.—In the sphere of mental philosophy and
logic Hutcheson’s contributions are by no means so important or
original as in that of moral philosophy. They are interesting mainly
as a link between Locke and the Scottish school. In the former
subject the influence of Locke is apparent throughout. All the main
outlines of Locke’s philosophy seem, at first sight, to be accepted as a
matter of course. Thus, in stating his theory of the moral sense,
Hutcheson is peculiarly careful to repudiate the doctrine of innate
ideas (see, for instance, Inquiry concerning Moral Good and Evil, sect.
1 ad fin., and sect. 4; and compare Synopsis Metaphysicae, pars i.
cap. 2). At the same time he shows more discrimination than does
Locke in distinguishing between the two uses of this expression, and
between the legitimate and illegitimate form of the doctrine (Syn.
Metaph. pars i. cap. 2). All our ideas are, as by Locke, referred to
external or internal sense, or, in other words, to sensation and reflection
(see, for instance, Syn. Metaph. pars i. cap. 1; Logicae
Compend. pars i. cap. 1; System of Moral Philosophy, bk. i. ch. 1).
It is, however, a most important modification of Locke’s doctrine,
and one which connects Hutcheson’s mental philosophy with that of
Reid, when he states that the ideas of extension, figure, motion and
rest “are more properly ideas accompanying the sensations of sight
and touch than the sensations of either of these senses”; that the
idea of self accompanies every thought, and that the ideas of
number, duration and existence accompany every other idea whatsoever
(see Essay on the Nature and Conduct of the Passions, sect. i.
art. 1; Syn. Metaph. pars i. cap. 1, pars ii. cap. 1; Hamilton on
Reid, p. 124, note). Other important points in which Hutcheson
follows the lead of Locke are his depreciation of the importance of
the so-called laws of thought, his distinction between the primary and
secondary qualities of bodies, the position that we cannot know the
inmost essences of things (“intimae rerum naturae sive essentiae”),
though they excite various ideas in us, and the assumption that external
things are known only through the medium of ideas (Syn.
Metaph. pars i. cap. 1), though, at the same time, we are assured
of the existence of an external world corresponding to these ideas.
Hutcheson attempts to account for our assurance of the reality of
an external world by referring it to a natural instinct (Syn. Metaph.
pars i. cap. 1). Of the correspondence or similitude between our ideas
of the primary qualities of things and the things themselves God
alone can be assigned as the cause. This similitude has been effected
by Him through a law of nature. “Haec prima qualitatum primariarum
perceptio, sive mentis actio quaedam sive passio dicatur, non
alia similitudinis aut convenientiae inter ejusmodi ideas et res ipsas
causa assignari posse videtur, quam ipse Deus, qui certa naturae lege
hoc efficit, ut notiones, quae rebus praesentibus excitantur, sint ipsis
similes, aut saltem earum habitudines, si non veras quantitates,
depingant” (pars ii. cap. 1). Locke does speak of God “annexing”
certain ideas to certain motions of bodies; but nowhere does he
propound a theory so definite as that here propounded by Hutcheson,
which reminds us at least as much of the speculations of Malebranche
as of those of Locke.

Amongst the more important points in which Hutcheson diverges
from Locke is his account of the idea of personal identity, which he
appears to have regarded as made known to us directly by consciousness.
The distinction between body and mind, corpus or materia and
res cogitans, is more emphatically accentuated by Hutcheson than
by Locke. Generally, he speaks as if we had a direct consciousness
of mind as distinct from body (see, for instance, Syn. Metaph. pars ii.
cap. 3), though, in the posthumous work on Moral Philosophy, he
expressly states that we know mind as we know body “by qualities
immediately perceived though the substance of both be unknown”
(bk. i. ch. 1). The distinction between perception proper and sensation
proper, which occurs by implication though it is not explicitly
worked out (see Hamilton’s Lectures on Metaphysics, Lect. 24;
Hamilton’s edition of Dugald Stewart’s Works, v. 420), the
imperfection of the ordinary division of the external senses into five
classes, the limitation of consciousness to a special mental faculty
(severely criticized in Sir W. Hamilton’s Lectures on Metaphysics,
Lect. xii.) and the disposition to refer on disputed questions of philosophy
not so much to formal arguments as to the testimony of consciousness
and our natural instincts are also amongst the points in
which Hutcheson supplemented or departed from the philosophy of
Locke. The last point can hardly fail to suggest the “common-sense
philosophy” of Reid.

Thus, in estimating Hutcheson’s position, we find that in particular
questions he stands nearer to Locke, but in the general spirit of his
philosophy he seems to approach more closely to his Scottish successors.

The short Compendium of Logic, which is more original than such

works usually are, is remarkable chiefly for the large proportion of
psychological matter which it contains. In these parts of the book
Hutcheson mainly follows Locke. The technicalities of the subject
are passed lightly over, and the book is readable. It may be specially
noticed that he distinguishes between the mental result and its verbal
expression [idea—term; judgment—proposition], that he constantly
employs the word “idea,” and that he defines logical truth as “convenientia
signorum cum rebus significatis” (or “propositionis convenientia
cum rebus ipsis,” Syn. Metaph. pars i. cap 3), thus implicitly
repudiating a merely formal view of logic.

III. Aesthetics.—Hutcheson may further be regarded as one of
the earliest modern writers on aesthetics. His speculations on this
subject are contained in the Inquiry concerning Beauty, Order,
Harmony and Design, the first of the two treatises published in 1725.
He maintains that we are endowed with a special sense by which we
perceive beauty, harmony and proportion. This is a reflex sense,
because it presupposes the action of the external senses of sight and
hearing. It may be called an internal sense, both in order to distinguish
its perceptions from the mere perceptions of sight and
hearing, and because “in some other affairs, where our external senses
are not much concerned, we discern a sort of beauty, very like in
many respects to that observed in sensible objects, and accompanied
with like pleasure” (Inquiry, &c., sect. 1). The latter reason leads
him to call attention to the beauty perceived in universal truths, in the
operations of general causes and in moral principles and actions.
Thus, the analogy between beauty and virtue, which was so favourite
a topic with Shaftesbury, is prominent in the writings of Hutcheson
also. Scattered up and down the treatise there are many important
and interesting observations which our limits prevent us from
noticing. But to the student of mental philosophy it may be
specially interesting to remark that Hutcheson both applies the
principle of association to explain our ideas of beauty and also sets
limits to its application, insisting on there being “a natural power
of perception or sense of beauty in objects, antecedent to all custom,
education or example” (see Inquiry, &c., sects. 6, 7; Hamilton’s
Lectures on Metaphysics, Lect. 44 ad fin.).

Hutcheson’s writings naturally gave rise to much controversy.
To say nothing of minor opponents, such as “Philaretus” (Gilbert
Burnet, already alluded to), Dr John Balguy (1686-1748), prebendary
of Salisbury, the author of two tracts on “The Foundation
of Moral Goodness,” and Dr John Taylor (1694-1761) of Norwich, a
minister of considerable reputation in his time (author of An Examination
of the Scheme of Morality advanced by Dr Hutcheson), the essays
appear to have suggested, by antagonism, at least two works which
hold a permanent place in the literature of English ethics—Butler’s
Dissertation on the Nature of Virtue, and Richard Price’s Treatise of
Moral Good and Evil (1757). In this latter work the author maintains,
in opposition to Hutcheson, that actions are in themselves right
or wrong, that right and wrong are simple ideas incapable of analysis,
and that these ideas are perceived immediately by the understanding.
We thus see that, not only directly but also through the replies
which it called forth, the system of Hutcheson, or at least the system
of Hutcheson combined with that of Shaftesbury, contributed, in
large measure, to the formation and development of some of the most
important of the modern schools of ethics (see especially art. Ethics).

Authorities.—Notices of Hutcheson occur in most histories, both
of general philosophy and of moral philosophy, as, for instance, in
pt. vii. of Adam Smith’s Theory of Moral Sentiments; Mackintosh’s
Progress of Ethical Philosophy; Cousin, Cours d’histoire de la
philosophie morale du XVIIIe siècle; Whewell’s Lectures on the
History of Moral Philosophy in England; A. Bain’s Mental and Moral
Science; Noah Porter’s Appendix to the English translation of
Ueberweg’s History of Philosophy; Sir Leslie Stephen’s History of
English Thought in the Eighteenth Century, &c. See also Martineau,
Types of Ethical Theory (London, 1902); W. R. Scott, Francis
Hutcheson (Cambridge, 1900); Albee, History of English Utilitarianism
(London, 1902); T. Fowler, Shaftesbury and Hutcheson (London,
1882); J. McCosh, Scottish Philosophy (New York, 1874). Of Dr
Leechman’s Biography of Hutcheson we have already spoken.
J. Veitch gives an interesting account of his professorial work in
Glasgow, Mind, ii. 209-212.


(T. F.; X.)


 
1 See Belfast Magazine for August 1813.





HUTCHINSON, ANNE (c. 1600-1643), American religious
enthusiast, leader of the “Antinomians” in New England,
was born in Lincolnshire, England, about 1600. She was the
daughter of a clergyman named Francis Marbury, and, according
to tradition, was a cousin of John Dryden. She married William
Hutchinson, and in 1634 emigrated to Boston, Massachusetts,
as a follower and admirer of the Rev. John Cotton. Her orthodoxy
was suspected and for a time she was not admitted to the church,
but soon she organized meetings among the Boston women,
among whom her exceptional ability and her services as a nurse
had given her great influence; and at these meetings she discussed
and commented upon recent sermons and gave expression
to her own theological views. The meetings became increasingly
popular, and were soon attended not only by the women but
even by some of the ministers and magistrates, including Governor
Henry Vane. At these meetings she asserted that she, Cotton
and her brother-in-law, the Rev. John Wheelwright—whom
she was trying to make second “teacher” in the Boston church—were
under a “covenant of grace,” that they had a special
inspiration, a “peculiar indwelling of the Holy Ghost,” whereas
the Rev. John Wilson, the pastor of the Boston church, and
the other ministers of the colony were under a “covenant of
works.” Anne Hutchinson was, in fact, voicing a protest against
the legalism of the Massachusetts Puritans, and was also striking
at the authority of the clergy in an intensely theocratic community.
In such a community a theological controversy inevitably
was carried into secular politics, and the entire colony was
divided into factions. Mrs Hutchinson was supported by
Governor Vane, Cotton, Wheelwright and the great majority of
the Boston church; opposed to her were Deputy-Governor John
Winthrop, Wilson and all of the country magistrates and
churches. At a general fast, held late in January 1637, Wheelwright
preached a sermon which was taken as a criticism of
Wilson and his friends. The strength of the parties was tested
at the General Court of Election of May 1637, when Winthrop
defeated Vane for the governorship. Cotton recanted, Vane returned
to England in disgust, Wheelwright was tried and banished
and the rank and file either followed Cotton in making submission
or suffered various minor punishments. Mrs Hutchinson
was tried (November 1637) by the General Court chiefly for
“traducing the ministers,” and was sentenced to banishment;
later, in March 1638, she was tried before the Boston church
and was formally excommunicated. With William Coddington
(d. 1678), John Clarke and others, she established a settlement
on the island of Aquidneck (now Rhode Island) in 1638. Four
years later, after the death of her husband, she settled on Long
Island Sound near what is now New Rochelle, Westchester
county, New York, and was killed in an Indian rising in August
1643, an event regarded in Massachusetts as a manifestation
of Divine Providence. Anne Hutchinson and her followers
were called “Antinomians,” probably more as a term of reproach
than with any special reference to her doctrinal theories; and
the controversy in which she was involved is known as the
“Antinomian Controversy.”


See C. F. Adams, Antinomianism in the Colony of Massachusetts
Bay, vol. xiv. of the Prince Society Publications (Boston, 1894);
and Three Episodes of Massachusetts History (Boston and New York,
1896).





HUTCHINSON, JOHN (1615-1664), Puritan soldier, son of
Sir Thomas Hutchinson of Owthorpe, Nottinghamshire, and
of Margaret, daughter of Sir John Byron of Newstead, was
baptized on the 18th of September 1615. He was educated at
Nottingham and Lincoln schools and at Peterhouse, Cambridge,
and in 1637 he entered Lincoln’s Inn. On the outbreak of the
great Rebellion he took the side of the Parliament, and was
made in 1643 governor of Nottingham Castle, which he defended
against external attacks and internal divisions, till the triumph
of the parliamentary cause. He was chosen member for
Nottinghamshire in March 1646, took the side of the Independents,
opposed the offers of the king at Newport, and signed the death-warrant.
Though a member at first of the council of state, he
disapproved of the subsequent political conduct of Cromwell
and took no further part in politics during the lifetime of the
protector. He resumed his seat in the recalled Long Parliament
in May 1659, and followed Monk in opposing Lambert, believing
that the former intended to maintain the commonwealth.
He was returned to the Convention Parliament for Nottingham
but expelled on the 9th of June 1660, and while not excepted
from the Act of Indemnity was declared incapable of holding
public office. In October 1663, however, he was arrested upon
suspicion of being concerned in the Yorkshire plot, and after
a rigorous confinement in the Tower of London, of which he
published an account (reprinted in the Harleian Miscellany,
vol. iii.), and in Sandown Castle, Kent, he died on the 11th of
September 1664. His career draws its chief interest from the
Life by his wife, Lucy, daughter of Sir Allen Apsley, written

after the death of her husband but not published till 1806 (since
often reprinted), a work not only valuable for the picture which
it gives of the man and of the time in which he lived, but for
the simple beauty of its style, and the naïveté with which the
writer records her sentiments and opinions, and details the
incidents of her private life.


See the edition of Lucy Hutchinson’s Memoirs of the Life of Colonel
Hutchinson by C. H. Firth (1885); Brit. Mus. Add. MSS. 25,901 (a
fragment of the Life), also Add. MSS. 19, 333, 36,247 f. 51; Notes
and Queries, 7, ser. iii. 25, viii. 422; Monk’s Contemporaries, by
Guizot.





HUTCHINSON, JOHN (1674-1737), English theological writer,
was born at Spennithorne, Yorkshire, in 1674. He served as
steward in several families of position, latterly in that of the
duke of Somerset, who ultimately obtained for him the post
of riding purveyor to the master of the horse, a sinecure worth
about £200 a year. In 1700 he became acquainted with Dr
John Woodward (1665-1728) physician to the duke and author
of a work entitled The Natural History of the Earth, to whom he
entrusted a large number of fossils of his own collecting, along
with a mass of manuscript notes, for arrangement and publication.
A misunderstanding as to the manner in which these should
be dealt with was the immediate occasion of the publication
by Hutchinson in 1724 of Moses’s Principia, part i., in which
Woodward’s Natural History was bitterly ridiculed, his conduct
with regard to the mineralogical specimens not obscurely
characterized, and a refutation of the Newtonian doctrine of
gravitation seriously attempted. It was followed by part ii.
in 1727, and by various other works, including Moses’s Sine
Principio, 1730; The Confusion of Tongues and Trinity of the
Gentiles, 1731; Power Essential and Mechanical, or what power
belongs to God and what to his creatures, in which the design of
Sir I. Newton and Dr Samuel Clarke is laid open, 1732; Glory or
Gravity, 1733; The Religion of Satan, or Antichrist Delineated,
1736. He taught that the Bible contained the elements not only
of true religion but also of all rational philosophy. He held
that the Hebrew must be read without points, and his interpretation
rested largely on fanciful symbolism. Bishop George Home
of Norwich was during some of his earlier years an avowed
Hutchinsonian; and William Jones of Nayland continued to
be so to the end of his life.


A complete edition of his publications, edited by Robert Spearman
and Julius Bate, appeared in 1748 (12 vols.); an Abstract of these
followed in 1753; and a Supplement, with Life by Spearman prefixed,
in 1765.





HUTCHINSON, SIR JONATHAN (1828-  ), English surgeon
and pathologist, was born on the 23rd of July 1828 at Selby,
Yorkshire, his parents belonging to the Society of Friends.
He entered St Bartholomew’s Hospital, became a member of the
Royal College of Surgeons in 1850 (F.R.C.S. 1862), and rapidly
gained reputation as a skilful operator and a scientific inquirer.
He was president of the Hunterian Society in 1869 and 1870,
professor of surgery and pathology at the College of Surgeons
from 1877 to 1882, president of the Pathological Society, 1879-1880,
of the Ophthalmological Society, 1883, of the Neurological
Society, 1887, of the Medical Society, 1890, and of the Royal
Medical and Chirurgical in 1894-1896. In 1889 he was president
of the Royal College of Surgeons. He was a member of two
Royal Commissions, that of 1881 to inquire into the provision
for smallpox and fever cases in the London hospitals, and that
of 1889-1896 on vaccination and leprosy. He also acted as
honorary secretary to the Sydenham Society. His activity
in the cause of scientific surgery and in advancing the study
of the natural sciences was unwearying. His lectures on neuro-pathogenesis,
gout, leprosy, diseases of the tongue, &c., were full
of original observation; but his principal work was connected
with the study of syphilis, on which he became the first living
authority. He was the founder of the London Polyclinic or
Postgraduate School of Medicine; and both in his native town
of Selby and at Haslemere, Surrey, he started (about 1890)
educational museums for popular instruction in natural history.
He published several volumes on his own subjects, was editor of
the quarterly Archives of Surgery, and was given the Hon. LL.D.
degree by both Glasgow and Cambridge. After his retirement
from active consultative work he continued to take great interest
in the question of leprosy, asserting the existence of a definite
connexion between this disease and the eating of salted fish.
He received a knighthood in 1908.



HUTCHINSON, THOMAS (1711-1780), the last royal governor
of the province of Massachusetts, son of a wealthy merchant
of Boston, Mass., was born there on the 9th of September 1711.
He graduated at Harvard in 1727, then became an apprentice
in his father’s counting-room, and for several years devoted
himself to business. In 1737 he began his public career as a
member of the Boston Board of Selectmen, and a few weeks
later he was elected to the General Court of Massachusetts Bay,
of which he was a member until 1740 and again from 1742 to
1749, serving as speaker in 1747, 1748 and 1749. He consistently
contended for a sound financial system, and vigorously
opposed the operations of the “Land Bank” and the issue of
pernicious bills of credit. In 1748 he carried through the
General Court a bill providing for the cancellation and redemption
of the outstanding paper currency. Hutchinson went to England
in 1740 as the representative of Massachusetts in a boundary
dispute with New Hampshire. He was a member of the Massachusetts
Council from 1749 to 1756, was appointed judge of
probate in 1752 and was chief justice of the superior court of
the province from 1761 to 1769, was lieutenant-governor from
1758 to 1771, acting as governor in the latter two years, and
from 1771 to 1774 was governor. In 1754 he was a delegate
from Massachusetts to the Albany Convention, and, with Franklin,
was a member of the committee appointed to draw up a plan of
union. Though he recognized the legality of the Stamp Act
of 1765, he considered the measure inexpedient and impolitic
and urged its repeal, but his attitude was misunderstood; he
was considered by many to have instigated the passage of the
Act, and in August 1765 a mob sacked his Boston residence
and destroyed many valuable manuscripts and documents.
He was acting governor at the time of the “Boston Massacre”
in 1770, and was virtually forced by the citizens of Boston,
under the leadership of Samuel Adams, to order the removal
of the British troops from the town. Throughout the pre-Revolutionary
disturbances in Massachusetts he was the representative
of the British ministry, and though he disapproved
of some of the ministerial measures he felt impelled to enforce
them and necessarily incurred the hostility of the Whig or
Patriot element. In 1774, upon the appointment of General
Thomas Gage as military governor he went to England, and
acted as an adviser to George III. and the British ministry
on American affairs, uniformly counselling moderation. He
died at Brompton, now part of London, on the 3rd of June
1780.


He wrote A Brief Statement of the Claim of the Colonies (1764); a
Collection of Original Papers relative to the History of Massachusetts
Bay (1769), reprinted as The Hutchinson Papers by the Prince
Society in 1865; and a judicious, accurate and very valuable History
of the Province of Massachusetts Bay (vol. i., 1764, vol. ii., 1767, and
vol. iii., 1828). His Diary and Letters, with an Account of his Administration,
was published at Boston in 1884-1886.

See James K. Hosmer’s Life of Thomas Hutchinson (Boston, 1896),
and a biographical chapter in John Fiske’s Essays Historical and
Literary (New York, 1902). For an estimate of Hutchinson as an
historian, see M. C. Tyler’s Literary History of the American Revolution
(New York, 1897).





HUTCHINSON, a city and the county-seat of Reno county,
Kansas, U.S.A., in the broad bottom-land on the N. side of
the Arkansas river. Pop. (1900) 9379, of whom 414 were
foreign-born and 442 negroes; (1910 census) 16,364. It
is served by the Atchison, Topeka & Santa Fé, the Missouri
Pacific and the Chicago, Rock Island & Pacific railways. The
principal public buildings are the Federal building and the county
court house. The city has a public library, and an industrial
reformatory is maintained here by the state. Hutchinson is
situated in a stock-raising, fruit-growing and farming region
(the principal products of which are wheat, Indian corn and
fodder), with which it has a considerable wholesale trade. An
enormous deposit of rock salt underlies the city and its vicinity,

and Hutchinson’s principal industry is the manufacture (by
the open-pan and grainer processes) and the shipping of salt;
the city has one of the largest salt plants in the world. Among
the other manufactures are flour, creamery products, soda-ash,
straw-board, planing-mill products and packed meats.
Natural gas is largely used as a factory fuel. The city’s factory
product was valued at $2,031,048 in 1905, an increase of 31.8%
since 1900. Hutchinson was chartered as a city In 1871.



HUTTEN, PHILIPP VON (c. 1511-1546), German knight,
was a relative of Ulrich von Hutten and passed some of his
early years at the court of the emperor Charles V. Later he
joined the band of adventurers which under Georg Hohermuth,
or George of Spires, sailed to Venezuela, or Venosala as Hutten
calls it, with the object of conquering and exploiting this land in
the interests of the Augsburg family of Welser. The party
landed at Coro in February 1535 and Hutten accompanied
Hohermuth on his long and toilsome expedition into the interior
in search of treasure. After the death of Hohermuth in December
1540 he became captain-general of Venezuela. Soon after this
event he vanished into the interior, returning after five years
of wandering to find that a Spaniard, Juan de Caravazil, or
Caravajil, had been appointed governor in his absence. With
his travelling companion, Bartholomew Welser the younger,
he was seized by Caravazil in April 1546 and the two were
afterwards put to death.


Hutten left some letters, and also a narrative of the earlier part of
his adventures, this Zeitung aus India Junkher Philipps von Hutten
being published in 1785.





HUTTEN, ULRICH VON (1488-1523), was born on the 21st of
April 1488, at the castle of Steckelberg, near Fulda, in Hesse.
Like Erasmus or Pirckheimer, he was one of those men who
form the bridge between Humanists and Reformers. He lived
with both, sympathized with both, though he died before the
Reformation had time fully to develop. His life may be divided
into four parts:—his youth and cloister-life (1488-1504); his
wanderings in pursuit of knowledge (1504-1515); his strife
with Ulrich of Württemberg (1515-1519); and his connexion
with the Reformation (1519-1523). Each of these periods
had its own special antagonism, which coloured Hutten’s career:
in the first, his horror of dull monastic routine; in the second,
the ill-treatment he met with at Greifswald; in the third, the
crime of Duke Ulrich; in the fourth, his disgust with Rome
and with Erasmus. He was the eldest son of a poor and not
undistinguished knightly family. As he was mean of stature
and sickly his father destined him for the cloister, and he was
sent to the Benedictine house at Fulda; the thirst for learning
there seized on him, and in 1505 he fled from the monastic life,
and won his freedom with the sacrifice of his worldly prospects,
and at the cost of incurring his father’s undying anger. From
the Fulda cloister he went first to Cologne, next to Erfurt, and then
to Frankfort-on-Oder on the opening in 1506 of the new university
of that town. For a time he was in Leipzig, and in 1508 we find
him a shipwrecked beggar on the Pomeranian coast. In 1509
the university of Greifswald welcomed him, but here too those
who at first received him kindly became his foes; the sensitive
ill-regulated youth, who took the liberties of genius, wearied
his burgher patrons; they could not brook the poet’s airs and
vanity, and ill-timed assertions of his higher rank. Wherefore
he left Greifswald, and as he went was robbed of clothes and
books, his only baggage, by the servants of his late friends;
in the dead of winter, half starved, frozen, penniless, he reached
Rostock. Here again the Humanists received him gladly,
and under their protection he wrote against his Greifswald
patrons, thus beginning the long list of his satires and fierce
attacks on personal or public foes. Rostock could not hold
him long; he wandered on to Wittenberg and Leipzig, and
thence to Vienna, where he hoped to win the emperor Maximilian’s
favour by an elaborate national poem on the war with Venice.
But neither Maximilian nor the university of Vienna would
lift a hand for him, and he passed into Italy, where, at Pavia,
he sojourned throughout 1511 and part of 1512. In the latter
year his studies were interrupted by war; in the siege of Pavia
by papal troops and Swiss, he was plundered by both sides,
and escaped, sick and penniless, to Bologna; on his recovery
he even took service as a private soldier in the emperor’s army.

This dark period lasted no long time; in 1514 he was again
in Germany, where, thanks to his poetic gifts and the friendship
of Eitelwolf von Stein (d. 1515), he won the favour of the elector
of Mainz, Archbishop Albert of Brandenburg. Here high
dreams of a learned career rose on him; Mainz should be made
the metropolis of a grand Humanist movement, the centre of
good style and literary form. But the murder in 1515 of his
relative Hans von Hutten by Ulrich, duke of Württemberg,
changed the whole course of his life; satire, chief refuge of the
weak, became Hutten’s weapon; with one hand he took his
part in the famous Epistolae obscurorum virorum, and with
the other launched scathing letters, eloquent Ciceronian orations,
or biting satires against the duke. Though the emperor was
too lazy and indifferent to smite a great prince, he took Hutten
under his protection and bestowed on him the honour of a
laureate crown in 1517. Hutten, who had meanwhile revisited
Italy, again attached himself to the electoral court at Mainz;
and he was there when in 1518 his friend Pirckheimer wrote,
urging him to abandon the court and dedicate himself to letters.
We have the poet’s long reply, in an epistle on his “way of life,”
an amusing mixture of earnestness and vanity, self-satisfaction
and satire; he tells his friend that his career is just begun,
that he has had twelve years of wandering, and will now enjoy
himself a while in patriotic literary work; that he has by no
means deserted the humaner studies, but carries with him
a little library of standard books. Pirckheimer in his burgher
life may have ease and even luxury; he, a knight of the empire,
how can he condescend to obscurity? He must abide where
he can shine.

In 1519 he issued in one volume his attacks on Duke Ulrich,
and then, drawing sword, took part in the private war which
overthrew that prince; in this affair he became intimate with
Franz von Sickingen, the champion of the knightly order
(Ritterstand). Hutten now warmly and openly espoused the
Lutheran cause, but he was at the same time mixed up in the
attempt of the “Ritterstand” to assert itself as the militia
of the empire against the independence of the German princes.
Soon after this time he discovered at Fulda a copy of the manifesto
of the emperor Henry IV. against Hildebrand, and published
it with comments as an attack on the papal claims over Germany.
He hoped thereby to interest the new emperor Charles V., and
the higher orders in the empire, in behalf of German liberties;
but the appeal failed. What Luther had achieved by speaking
to cities and common folk in homely phrase, because he touched
heart and conscience, that the far finer weapons of Hutten failed
to effect, because he tried to touch the more cultivated sympathies
and dormant patriotism of princes and bishops, nobles and
knights. And so he at once gained an undying name in the
republic of letters and ruined his own career. He showed that
the artificial verse-making of the Humanists could be connected
with the new outburst of genuine German poetry. The Minnesinger
was gone; the new national singer, a Luther or a Hans
Sachs, was heralded by the stirring lines of Hutten’s pen. These
have in them a splendid natural swing and ring, strong and
patriotic, though unfortunately addressed to knight and landsknecht
rather than to the German people.

The poet’s high dream of a knightly national regeneration
had a rude awakening. The attack on the papacy, and Luther’s
vast and sudden popularity, frightened Elector Albert, who
dismissed Hutten from his court. Hoping for imperial favour,
he betook himself to Charles V.; but that young prince would
have none of him. So he returned to his friends, and they
rejoiced greatly to see him still alive; for Pope Leo X. had
ordered him to be arrested and sent to Rome, and assassins
dogged his steps. He now attached himself more closely to
Franz von Sickingen and the knightly movement. This also
came to a disastrous end in the capture of the Ebernberg, and
Sickingen’s death; the higher nobles had triumphed; the archbishops
avenged themselves on Lutheranism as interpreted

by the knightly order. With Sickingen Hutten also finally fell.
He fled to Basel, where Erasmus refused to see him, both for
fear of his loathsome diseases, and also because the beggared
knight was sure to borrow money from him. A paper war
consequently broke out between the two Humanists, which
embittered Hutten’s last days, and stained the memory of
Erasmus. From Basel Ulrich dragged himself to Mülhausen;
and when the vengeance of Erasmus drove him thence, he went
to Zurich. There the large heart of Zwingli welcomed him;
he helped him with money, and found him a quiet refuge with
the pastor of the little isle of Ufnau on the Zurich lake. There
the frail and worn-out poet, writing swift satire to the end, died
at the end of August or beginning of September 1523 at the
age of thirty-five. He left behind him some debts due to compassionate
friends; he did not even own a single book, and
all his goods amounted to the clothes on his back, a bundle
of letters, and that valiant pen which had fought so many
a sharp battle, and had won for the poor knight-errant a sure
place in the annals of literature.

Ulrich von Hutten is one of those men of genius at whom
propriety is shocked, and whom the mean-spirited avoid. Yet
through his short and buffeted life he was befriended, with
wonderful charity and patience, by the chief leaders of the
Humanist movement. For, in spite of his irritable vanity,
his immoral life and habits, his odious diseases, his painful
restlessness, Hutten had much in him that strong men could
love. He passionately loved the truth, and was ever open
to all good influences. He was a patriot, whose soul soared
to ideal schemes and a grand utopian restoration of his country.
In spite of all, his was a frank and noble nature; his faults chiefly
the faults of genius ill-controlled, and of a life cast in the eventful
changes of an age of novelty. A swarm of writings issued from
his pen; at first the smooth elegance of his Latin prose and verse
seemed strangely to miss his real character; he was the Cicero
and Ovid of Germany before he became its Lucian.


His chief works were his Ars versificandi (1511); the Nemo (1518);
a work on the Morbus Gallicus (1519); the volume of Steckelberg
complaints against Duke Ulrich (including his four Ciceronian
Orations, his Letters and the Phalarismus) also in 1519; the Vadismus
(1520); and the controversy with Erasmus at the end of his life.
Besides these were many admirable poems in Latin and German.
It is not known with certainty how far Hutten was the parent of the
celebrated Epistolae obscurorum virorum, that famous satire on
monastic ignorance as represented by the theologians of Cologne
with which the friends of Reuchlin defended him. At first the
cloister-world, not discerning its irony, welcomed the work as a
defence of their position; though their eyes were soon opened by
the favour with which the learned world received it. The Epistolae
were eagerly bought up; the first part (41 letters) appeared at the
end of 1515; early in 1516 there was a second edition; later in 1516
a third, with an appendix of seven letters; in 1517 appeared the
second part (62 letters), to which a fresh appendix of eight letters
was subjoined soon after. In 1909 the Latin text of the Epistolae
with an English translation was published by F. G. Stokes. Hutten,
in a letter addressed to Robert Crocus, denied that he was the author
of the book, but there is no doubt as to his connexion with it.
Erasmus was of opinion that there were three authors, of whom
Crotus Rubianus was the originator of the idea, and Hutten a chief
contributor. D. F. Strauss, who dedicates to the subject a chapter
of his admirable work on Hutten, concludes that he had no share in
the first part, but that his hand is clearly visible in the second part,
which he attributes in the main to him. To him is due the more
serious and severe tone of that bitter portion of the satire. See
W. Brecht, Die Verfasser der Epistolae obscurorum virorum (1904).

For a complete catalogue of the writings of Hutten, see E. Böcking’s
Index Bibliographicus Huttenianus (1858). Böcking is also the editor
of the complete edition of Hutten’s works (7 vols., 1859-1862). A
selection of Hutten’s German writings, edited by G. Balke, appeared
in 1891. Cp. S. Szamatolski, Huttens deutsche Schriften (1891).
The best biography (though it is also somewhat of a political
pamphlet) is that of D. F. Strauss (Ulrich von Hutten, 1857;
4th ed., 1878; English translation by G. Sturge, 1874), with
which may be compared the older monographs by A. Wagenseil
(1823), A. Bürck (1846) and J. Zeller (Paris, 1849). See also
J. Deckert, Ulrich von Huttens Leben und Wirken. Eine historische
Skizze (1901).



(G. W. K.)



HUTTER, LEONHARD (1563-1616), German Lutheran
theologian, was born at Nellingen near Ulm in January 1563.
From 1581 he studied at the universities of Strassburg, Leipzig,
Heidelberg and Jena. In 1594 he began to give theological
lectures at Jena, and in 1596 accepted a call as professor of
theology at Wittenberg, where he died on the 23rd of October
1616. Hutter was a stern champion of Lutheran orthodoxy,
as set down in the confessions and embodied in his own
Compendium locorum theologicorum (1610; reprinted 1863),
being so faithful to his master as to win the title of “Luther
redonatus.”


In reply to Rudolf Hospinian’s Concordia discors (1607), he wrote
a work, rich in historical material but one-sided in its apologetics,
Concordia concors (1614), defending the formula of Concord, which
he regarded as inspired. His Irenicum vere christianum is directed
against David Pareus (1548-1622), professor primarius at Heidelberg,
who in Irenicum sive de unione et synodo Evangelicorum (1614) had
pleaded for a reconciliation of Lutheranism and Calvinism; his
Calvinista aulopoliticus (1610) was written against the “damnable
Calvinism” which was becoming prevalent in Holstein and Brandenburg.
Another work, based on the formula of Concord, was entitled
Loci communes theologici.





HUTTON, CHARLES (1737-1823), English mathematician,
was born at Newcastle-on-Tyne on the 14th of August 1737.
He was educated in a school at Jesmond, kept by Mr Ivison,
a clergyman of the church of England. There is reason to believe,
on the evidence of two pay-bills, that for a short time in 1755
and 1756 Hutton worked in Old Long Benton colliery; at any
rate, on Ivison’s promotion to a living, Hutton succeeded to
the Jesmond school, whence, in consequence of increasing pupils,
he removed to Stote’s Hall. While he taught during the day
at Stote’s Hall, he studied mathematics in the evening at a
school in Newcastle. In 1760 he married, and began tuition
on a larger scale in Newcastle, where he had among his pupils
John Scott, afterwards Lord Eldon, chancellor of England.
In 1764 he published his first work, The Schoolmaster’s Guide,
or a Complete System of Practical Arithmetic, which in 1770
was followed by his Treatise on Mensuration both in Theory and
Practice. In 1772 appeared a tract on The Principles of Bridges,
suggested by the destruction of Newcastle bridge by a high
flood on the 17th of November 1771. In 1773 he was appointed
professor of mathematics at the Royal Military Academy,
Woolwich, and in the following year he was elected F.R.S. and
reported on Nevil Maskelyne’s determination of the mean density
and mass of the earth from measurements taken in 1774-1776 at
Mount Schiehallion in Perthshire. This account appeared in the
Philosophical Transactions for 1778, was afterwards reprinted
in the second volume of his Tracts on Mathematical and Philosophical
Subjects, and procured for Hutton the degree of LL.D.
from the university of Edinburgh. He was elected foreign
secretary to the Royal Society in 1779, but his resignation in
1783 was brought about by the president Sir Joseph Banks,
whose behaviour to the mathematical section of the society
was somewhat high-handed (see Kippis’s Observations on the
late Contests in the Royal Society, London, 1784). After his
Tables of the Products and Powers of Numbers, 1781, and his
Mathematical Tables, 1785, he issued, for the use of the Royal
Military Academy, in 1787 Elements of Conic Sections, and in 1798
his Course of Mathematics. His Mathematical and Philosophical
Dictionary, a valuable contribution to scientific biography,
was published in 1795 (2nd ed., 1815), and the four volumes of
Recreations in Mathematics and Natural Philosophy, mostly a
translation from the French, in 1803. One of the most laborious
of his works was the abridgment, in conjunction with G. Shaw
and R. Pearson, of the Philosophical Transactions. This undertaking,
the mathematical and scientific parts of which fell to
Hutton’s share, was completed in 1809, and filled eighteen
volumes quarto. His name first appears in the Ladies’ Diary
(a poetical and mathematical almanac which was begun in
1704, and lasted till 1871) in 1764; ten years later he was
appointed editor of the almanac, a post which he retained till
1817. Previously he had begun a small periodical, Miscellanea
Mathematica, which extended only to thirteen numbers; subsequently
he published in five volumes The Diarian Miscellany,
which contained large extracts from the Diary. He resigned
his professorship in 1807, and died on the 27th of January 1823.


See John Bruce, Charles Hutton (Newcastle, 1823).







HUTTON, JAMES (1726-1797), Scottish geologist, was born
in Edinburgh on the 3rd of June 1726. Educated at the high
school and university of his native city, he acquired while a
student a passionate love of scientific inquiry. He was apprenticed
to a lawyer, but his employer advised that a more
congenial profession should be chosen for him. The young
apprentice chose medicine as being nearest akin to his favourite
pursuit of chemistry. He studied for three years at Edinburgh,
and completed his medical education in Paris, returning by
the Low Countries, and taking his degree of doctor of medicine
at Leiden in 1749. Finding, however, that there seemed hardly
any opening for him, he abandoned the medical profession,
and, having inherited a small property in Berwickshire from
his father, resolved to devote himself to agriculture. He then
went to Norfolk to learn the practical work of farming, and
subsequently travelled in Holland, Belgium and the north
of France. During these years he began to study the surface
of the earth, gradually shaping in his mind the problem
to which he afterwards devoted his energies. In the summer
of 1754 he established himself on his own farm in Berwickshire,
where he resided for fourteen years, and where he introduced
the most improved forms of husbandry. As the farm was
brought into excellent order, and as its management, becoming
more easy, grew less interesting, he was induced to let it, and
establish himself for the rest of his life in Edinburgh. This took
place about the year 1768. He was unmarried, and from this
period until his death in 1797 he lived with his three sisters.
Surrounded by congenial literary and scientific friends he
devoted himself to research.

At that time geology in any proper sense of the term did
not exist. Mineralogy, however, had made considerable progress.
But Hutton had conceived larger ideas than were entertained
by the mineralogists of his day. He desired to trace back the
origin of the various minerals and rocks, and thus to arrive
at some clear understanding of the history of the earth. For
many years he continued to study the subject. At last, in the
spring of the year 1785, he communicated his views to the
recently established Royal Society of Edinburgh in a paper
entitled Theory of the Earth, or an Investigation of the Laws
Observable in the Composition, Dissolution and Restoration of
Land upon the Globe. In this remarkable work the doctrine
is expounded that geology is not cosmogony, but must confine
itself to the study of the materials of the earth; that everywhere
evidence may be seen that the present rocks of the earth’s
surface have been in great part formed out of the waste of older
rocks; that these materials having been laid down under the
sea were there consolidated under great pressure, and were
subsequently disrupted and upheaved by the expansive power
of subterranean heat; that during these convulsions veins
and masses of molten rock were injected into the rents of the
dislocated strata; that every portion of the upraised land,
as soon as exposed to the atmosphere, is subject to decay; and
that this decay must tend to advance until the whole of the
land has been worn away and laid down on the sea-floor, whence
future upheavals will once more raise the consolidated sediments
into new land. In some of these broad and bold generalizations
Hutton was anticipated by the Italian geologists; but to him
belongs the credit of having first perceived their mutual relations,
and combined them in a luminous coherent theory based upon
observation.

It was not merely the earth to which Hutton directed his
attention. He had long studied the changes of the atmosphere.
The same volume in which his Theory of the Earth appeared
contained also a Theory of Rain, which was read to the Royal
Society of Edinburgh in 1784. He contended that the amount
of moisture which the air can retain in solution increases with
augmentation of temperature, and, therefore, that on the
mixture of two masses of air of different temperatures a portion
of the moisture must be condensed and appear in visible form.
He investigated the available data regarding rainfall and climate
in different regions of the globe, and came to the conclusion
that the rainfall is everywhere regulated by the humidity of the
air on the one hand, and the causes which promote mixtures
of different aerial currents in the higher atmosphere on
the other.

The vigour and versatility of his genius may be understood
from the variety of works which, during his thirty years’ residence
in Edinburgh, he gave to the world. In 1792 he published a
quarto volume entitled Dissertations on different Subjects in
Natural Philosophy, in which he discussed the nature of matter,
fluidity, cohesion, light, heat and electricity. Some of these
subjects were further illustrated by him in papers read before
the Royal Society of Edinburgh. He did not restrain himself
within the domain of physics, but boldly marched into that of
metaphysics, publishing three quarto volumes with the title
An Investigation of the Principles of Knowledge, and of the Progress
of Reason—from Sense to Science and Philosophy. In this work
he developed the idea that the external world, as conceived
by us, is the creation of our own minds influenced by impressions
from without, that there is no resemblance between our picture
of the outer world and the reality, yet that the impressions
produced upon our minds, being constant and consistent, become
as much realities to us as if they precisely resembled things
actually existing, and, therefore, that our moral conduct must
remain the same as if our ideas perfectly corresponded to the
causes producing them. His closing years were devoted to the
extension and republication of his Theory of the Earth, of which
two volumes appeared in 1795. A third volume, necessary
to complete the work, was left by him in manuscript, and is
referred to by his biographer John Playfair. A portion of the
MS. of this volume, which had been given to the Geological
Society of London by Leonard Horner, was published by the
Society in 1899, under the editorship of Sir A. Geikie. The
rest of the manuscript appears to be lost. Soon afterwards
Hutton set to work to collect and systematize his numerous
writings on husbandry, which he proposed to publish under
the title of Elements of Agriculture. He had nearly completed
this labour when an incurable disease brought his active career
to a close on the 26th of March 1797.


It is by his Theory of the Earth that Hutton will be remembered
with reverence while geology continues to be cultivated. The
author’s style, however, being somewhat heavy and obscure, the
book did not attract during his lifetime so much attention as it deserved.
Happily for science Hutton numbered among his friends
John Playfair (q.v.), professor of mathematics in the university of
Edinburgh, whose enthusiasm for the spread of Hutton’s doctrine
was combined with a rare gift of graceful and luminous exposition.
Five years after Hutton’s death he published a volume, Illustrations
of the Huttonian Theory of the Earth, in which he gave an admirable
summary of that theory, with numerous additional illustrations and
arguments. This work is justly regarded as one of the classical contributions
to geological literature. To its influence much of the
sound progress of British geology must be ascribed. In the year
1805 a biographical account of Hutton, written by Playfair, was
published in vol. v. of the Transactions of the Royal Society of Edinburgh.



(A. Ge.)



HUTTON, RICHARD HOLT (1826-1897), English writer
and theologian, son of Joseph Hutton, Unitarian minister at
Leeds, was born at Leeds on the 2nd of June 1826. His family
removed to London in 1835, and he was educated at University
College School and University College, where he began a lifelong
friendship with Walter Bagehot, of whose works he afterwards
was the editor; he took the degree in 1845, being awarded the
gold medal for philosophy. Meanwhile he had also studied
for short periods at Heidelberg and Berlin, and in 1847 he entered
Manchester New College with the idea of becoming a minister
like his father, and studied there under James Martineau.
He did not, however, succeed in obtaining a call to any church,
and for some little time his future was unsettled. He married
in 1851 his cousin, Anne Roscoe, and became joint-editor with
J. L. Sanford of the Inquirer, the principal Unitarian organ.
But his innovations and his unconventional views about stereotyped
Unitarian doctrines caused alarm, and in 1853 he resigned.
His health had broken down, and he visited the West Indies,
where his wife died of yellow fever. In 1855 Hutton and Bagehot
became joint-editors of the National Review, a new monthly,
and conducted it for ten years. During this time Hutton’s
theological views, influenced largely by Coleridge, and more

directly by F. W. Robertson and F. D. Maurice, gradually
approached more and more to those of the Church of England,
which he ultimately joined. His interest in theology was
profound, and he brought to it a spirituality of outlook and
an aptitude for metaphysical inquiry and exposition which
added a singular attraction to his writings. In 1861 he joined
Meredith Townsend as joint-editor and part proprietor of the
Spectator, then a well-known liberal weekly, which, however,
was not remunerative from the business point of view. Hutton
took charge of the literary side of the paper, and by degrees
his own articles became and remained up to the last one of the
best-known features of serious and thoughtful English journalism.
The Spectator, which gradually became a prosperous property,
was his pulpit, in which unwearyingly he gave expression to
his views, particularly on literary, religious and philosophical
subjects, in opposition to the agnostic and rationalistic opinions
then current in intellectual circles, as popularized by Huxley.
A man of fearless honesty, quick and catholic sympathies, broad
culture, and many friends in intellectual and religious circles,
he became one of the most influential journalists of the day,
his fine character and conscience earning universal respect and
confidence. He was an original member of the Metaphysical
Society (1869). He was an anti-vivisectionist, and a member
of the royal commission (1875) on that subject. In 1858 he
had married Eliza Roscoe, a cousin of his first wife; she died
early in 1897, and Hutton’s own death followed on the 9th of
September of the same year.


Among his other publications may be mentioned Essays, Theological
and Literary (1871; revised 1888), and Criticisms on Contemporary
Thought and Thinkers (1894); and his opinions may be
studied compendiously in the selections from his Spectator articles
published in 1899 under the title of Aspects of Religious and Scientific
Thought.





HUXLEY, THOMAS HENRY (1825-1895), English biologist,
was born on the 4th of May 1825 at Ealing, where his father,
George Huxley, was senior assistant-master in the school of
Dr Nicholas. This was an establishment of repute, and is at
any rate remarkable for having produced two men with so
little in common in after life as Huxley and Cardinal Newman.
The cardinal’s brother, Francis William, had been “captain”
of the school in 1821. Huxley was a seventh child (as his father
had also been), and the youngest who survived infancy. Of
Huxley’s ancestry no more is ascertainable than in the case
of most middle-class families. He himself thought it sprang
from the Cheshire Huxleys of Huxley Hall. Different branches
migrated south, one, now extinct, reaching London, where its
members were apparently engaged in commerce. They established
themselves for four generations at Wyre Hall, near
Edmonton, and one was knighted by Charles II. Huxley describes
his paternal race as “mainly Iberian mongrels, with a good
dash of Norman and a little Saxon.”1 From his father he thought
he derived little except a quick temper and the artistic faculty
which proved of great service to him and reappeared in an even
more striking degree in his daughter, the Hon. Mrs Collier.
“Mentally and physically,” he wrote, “I am a piece of my
mother.” Her maiden name was Rachel Withers. “She came
of Wiltshire people,” he adds, and describes her as “a typical
example of the Iberian variety.” He tells us that “her most
distinguishing characteristic was rapidity of thought.... That
peculiarity has been passed on to me in full strength” (Essays, i.
4). One of the not least striking facts in Huxley’s life is that
of education in the formal sense he received none. “I had
two years of a pandemonium of a school (between eight and
ten), and after that neither help nor sympathy in any intellectual
direction till I reached manhood” (Life, ii. 145). After the
death of Dr Nicholas the Ealing school broke up, and Huxley’s
father returned about 1835 to his native town, Coventry, where
he had obtained a small appointment. Huxley was left to
his own devices; few histories of boyhood could offer any
parallel. At twelve he was sitting up in bed to read Hutton’s
Geology. His great desire was to be a mechanical engineer;
it ended in his devotion to “the mechanical engineering of living
machines.” His curiosity in this direction was nearly fatal;
a post-mortem he was taken to between thirteen and fourteen
was followed by an illness which seems to have been the starting-point
of the ill-health which pursued him all through life. At
fifteen he devoured Sir William Hamilton’s Logic, and thus
acquired the taste for metaphysics, which he cultivated to the
end. At seventeen he came under the influence of Thomas
Carlyle’s writings. Fifty years later he wrote: “To make
things clear and get rid of cant and shows of all sorts. This
was the lesson I learnt from Carlyle’s books when I was a boy,
and it has stuck by me all my life” (Life, ii. 268). Incidentally
they led him to begin to learn German; he had already acquired
French. At seventeen Huxley, with his elder brother James,
commenced regular medical studies at Charing Cross Hospital,
where they had both obtained scholarships. He studied under
Wharton Jones, a physiologist who never seems to have attained
the reputation he deserved. Huxley said of him: “I do not
know that I ever felt so much respect for a teacher before or
since” (Life, i. 20). At twenty he passed his first M.B. examination
at the University of London, winning the gold medal for
anatomy and physiology; W. H. Ransom, the well-known
Nottingham physician, obtaining the exhibition. In 1845
he published, at the suggestion of Wharton Jones, his first
scientific paper, demonstrating the existence of a hitherto
unrecognized layer in the inner sheath of hairs, a layer that
has been known since as “Huxley’s layer.”

Something had to be done for a livelihood, and at the suggestion
of a fellow-student, Mr (afterwards Sir Joseph) Fayrer, he
applied for an appointment in the navy. He passed the necessary
examination, and at the same time obtained the qualification of
the Royal College of Surgeons. He was “entered on the books
of Nelson’s old ship, the ‘Victory,’ for duty at Haslar Hospital.”
Its chief, Sir John Richardson, who was a well-known Arctic
explorer and naturalist, recognized Huxley’s ability, and procured
for him the post of surgeon to H.M.S. “Rattlesnake,”
about to start for surveying work in Torres Strait. The commander,
Captain Owen Stanley, was a son of the bishop of
Norwich and brother of Dean Stanley, and wished for an officer
with some scientific knowledge. Besides Huxley the “Rattlesnake”
also carried a naturalist by profession, John Macgillivray,
who, however, beyond a dull narrative of the expedition, accomplished
nothing. The “Rattlesnake” left England on the
3rd of December 1846, and was ordered home after the lamented
death of Captain Stanley at Sydney, to be paid off at Chatham
on the 9th of November 1850. The tropical seas teem with
delicate surface-life, and to the study of this Huxley devoted
himself with unremitting devotion. At that time no known
methods existed by which it could be preserved for study in
museums at home. He gathered a magnificent harvest in
the almost unreaped field, and the conclusions he drew from
it were the beginning of the revolution in zoological science
which he lived to see accomplished.

Baron Cuvier (1769-1832), whose classification still held
its ground, had divided the animal kingdom into four great
embranchements. Each of these corresponded to an independent
archetype, of which the “idea” had existed in the mind of
the Creator. There was no other connexion between these
classes, and the “ideas” which animated them were, as far
as one can see, arbitrary. Cuvier’s groups, without their
theoretical basis, were accepted by K. E. von Baer (1792-1876).
The “idea” of the group, or archetype, admitted of endless
variation within it; but this was subordinate to essential
conformity with the archetype, and hence Cuvier deduced the
important principle of the “correlation of parts,” of which
he made such conspicuous use in palaeontological reconstruction.
Meanwhile the “Naturphilosophen,” with J. W. Goethe (1749-1832)
and L. Oken (1779-1851), had in effect grasped the underlying
principle of correlation, and so far anticipated evolution
by asserting the possibility of deriving specialized from simpler
structures. Though they were still hampered by idealistic
conceptions, they established morphology. Cuvier’s four great
groups were Vertebrata, Mollusca, Articulata and Radiata.

It was amongst the members of the last class that Huxley found
most material ready to his hand in the seas of the tropics. It
included organisms of the most varied kind, with nothing more
in common than that their parts were more or less distributed
round a centre. Huxley sent home “communication after
communication to the Linnean Society,” then a somewhat
somnolent body, “with the same result as that obtained by
Noah when he sent the raven out of the ark” (Essays, i. 13).
His important paper, On the Anatomy and the Affinities of the
Family of Medusae, met with a better fate. It was communicated
by the bishop of Norwich to the Royal Society, and printed
by it in the Philosophical Transactions in 1849. Huxley
united, with the Medusae, the Hydroid and Sertularian polyps,
to form a class to which he subsequently gave the name of
Hydrozoa. This alone was no inconsiderable feat for a young
surgeon who had only had the training of the medical school.
But the ground on which it was done has led to far-reaching
theoretical developments. Huxley realized that something
more than superficial characters were necessary in determining
the affinities of animal organisms. He found that all the members
of the class consisted of two membranes enclosing a central
cavity or stomach. This is characteristic of what are now
called the Coelenterata. All animals higher than these have
been termed Coelomata; they possess a distinct body-cavity
in addition to the stomach. Huxley went further than this,
and the most profound suggestion in his paper is the comparison
of the two layers with those which appear in the germ of the
higher animals. The consequences which have flowed from
this prophetic generalization of the ectoderm and endoderm are
familiar to every student of evolution. The conclusion was
the more remarkable as at the time he was not merely free
from any evolutionary belief, but actually rejected it. The
value of Huxley’s work was immediately recognized. On
returning to England in 1850 he was elected a Fellow of the Royal
Society. In the following year, at the age of twenty-six, he not
merely received the Royal medal, but was elected on the council.
With absolutely no aid from any one he had placed himself
in the front rank of English scientific men. He secured the
friendship of Sir J. D. Hooker and John Tyndall, who remained
his lifelong friends. The Admiralty retained him as a nominal
assistant-surgeon, in order that he might work up the observations
he had made during the voyage of the “Rattlesnake.” He was
thus enabled to produce various important memoirs, especially
those on certain Ascidians, in which he solved the problem
of Appendicularia—an organism whose place in the animal
kingdom Johannes Müller had found himself wholly unable
to assign—and on the morphology of the Cephalous Mollusca.

Richard Owen, then the leading comparative anatomist in
Great Britain, was a disciple of Cuvier, and adopted largely from
him the deductive explanation of anatomical fact from idealistic
conceptions. He superadded the evolutionary theories of
Oken, which were equally idealistic, but were altogether repugnant
to Cuvier. Huxley would have none of either. Imbued
with the methods of von Baer and Johannes Müller, his methods
were purely inductive. He would not hazard any statement
beyond what the facts revealed. He retained, however, as has
been done by his successors, the use of archetypes, though they
no longer represented fundamental “ideas” but generalizations
of the essential points of structure common to the individuals
of each class. He had not wholly freed himself, however, from
archetypal trammels. “The doctrine,” he says, “that every
natural group is organized after a definite archetype ... seems
to me as important for zoology as the doctrine of definite proportions
for chemistry.” This was in 1853. He further stated:
“There is no progression from a lower to a higher type, but
merely a more or less complete evolution of one type” (Phil.
Trans., 1853, p. 63). As Chalmers Mitchell points out, this statement
is of great historical interest. Huxley definitely uses the word
“evolution,” and admits its existence within the great groups.
He had not, however, rid himself of the notion that the archetype
was a property inherent in the group. Herbert Spencer, whose
acquaintance he made in 1852, was unable to convert him to
evolution in its widest sense (Life, i. 168). He could not bring
himself to acceptance of the theory—owing, no doubt, to his
rooted aversion from à priori reasoning—without a mechanical
conception of its mode of operation. In his first interview
with Darwin, which seems to have been about the same time,
he expressed his belief “in the sharpness of the lines of demarcation
between natural groups,” and was received with a humorous
smile (Life, i. 169).

The naval medical service exists for practical purposes. It
is not surprising, therefore, that after his three years’ nominal
employment Huxley was ordered on active service. Though
without private means of any kind, he resigned. The navy,
however, retains the credit of having started his scientific career
as well as that of Hooker and Darwin. Huxley was now thrown
on his own resources, the immediate prospects of which were
slender enough. As a matter of fact, he had not to wait many
months. His friend, Edward Forbes, was appointed to the chair
of natural history in Edinburgh, and in July 1854 he succeeded
him as lecturer at the School of Mines and as naturalist to the
Geological Survey in the following year. The latter post he
hesitated at first to accept, as he “did not care for fossils”
(Essays, i. 15). In 1855 he married Miss H. A. Heathorn, whose
acquaintance he had made in Sydney. They were engaged
when Huxley could offer nothing but the future promise of his
ability. The confidence of his devoted helpmate was not misplaced,
and her affection sustained him to the end, after she
had seen him the recipient of every honour which English science
could bestow. His most important research belonging to this
period was the Croonian Lecture delivered before the Royal
Society in 1858 on “The Theory of the Vertebrate Skull.”
In this he completely and finally demolished, by applying as
before the inductive method, the idealistic, if in some degree
evolutionary, views of its origin which Owen had derived from
Goethe and Oken. This finally disposed of the “archetype,”
and may be said once for all to have liberated the English
anatomical school from the deductive method.

In 1859 The Origin of Species was published. This was a
momentous event in the history of science, and not least for
Huxley. Hitherto he had turned a deaf ear to evolution. “I
took my stand,” he says, “upon two grounds: firstly, that ...
the evidence in favour of transmutation was wholly insufficient;
and secondly, that no suggestion respecting the causes of the
transmutation assumed, which had been made, was in any
way adequate to explain the phenomena” (Life, i. 168). Huxley
had studied Lamarck “attentively,” but to no purpose. Sir
Charles Lyell “was the chief agent in smoothing the road for
Darwin. For consistent uniformitarianism postulates evolution
as much in the organic as in the inorganic world” (l.c.); and
Huxley found in Darwin what he had failed to find in Lamarck,
an intelligible hypothesis good enough as a working basis. Yet
with the transparent candour which was characteristic of him,
he never to the end of his life concealed the fact that he thought
it wanting in rigorous proof. Darwin, however, was a naturalist;
Huxley was not. He says: “I am afraid there is very little
of the genuine naturalist in me. I never collected anything,
and species-work was always a burden to me; what I cared
for was the architectural and engineering part of the business”
(Essays, i. 7). But the solution of the problem of organic evolution
must work upwards from the initial stages, and it is precisely
for the study of these that “species-work” is necessary. Darwin,
by observing the peculiarities in the distribution of the plants
which he had collected in the Galapagos, was started on the
path that led to his theory. Anatomical research had only
so far led to transcendental hypothesis, though in Huxley’s
hands it had cleared the decks of that lumber. He quotes with
approval Darwin’s remark that “no one has a right to examine
the question of species who has not minutely described many”
(Essays, ii. 283). The rigorous proof which Huxley demanded
was the production of species sterile to one another by selective
breeding (Life, i. 193). But this was a misconception of the
question. Sterility is a physiological character, and the specific
differences which the theory undertook to account for are

morphological; there is no necessary nexus between the two.
Huxley, however, felt that he had at last a secure grip of evolution.
He warned Darwin: “I will stop at no point as long as clear
reasoning will carry me further” (Life, i. 172). Owen, who
had some evolutionary tendencies, was at first favourably
disposed to Darwin’s theory, and even claimed that he had to
some extent anticipated it in his own writings. But Darwin,
though he did not thrust it into the foreground, never flinched
from recognizing that man could not be excluded from his theory.
“Light will be thrown on the origin of man and his history”
(Origin, ed. i. 488). Owen could not face the wrath of fashionable
orthodoxy. In his Rede Lecture he endeavoured to save the
position by asserting that man was clearly marked off from all
other animals by the anatomical structure of his brain. This
was actually inconsistent with known facts, and was effectually
refuted by Huxley in various papers and lectures, summed up in
1863 in Man’s Place in Nature. This “monkey damnification” of
mankind was too much even for the “veracity” of Carlyle, who
is said to have never forgiven it. Huxley had not the smallest
respect for authority as a basis for belief, scientific or otherwise.
He held that scientific men were morally bound “to try all
things and hold fast to that which is good” (Life, ii. 161). Called
upon in 1862, in the absence of the president, to deliver the presidential
address to the Geological Society, he disposed once for all
of one of the principles accepted by geologists, that similar fossils
in distinct regions indicated that the strata containing them
were contemporary. All that could be concluded, he pointed
out, was that the general order of succession was the same.
In 1854 Huxley had refused the post of palaeontologist to the
Geological Survey; but the fossils for which he then said that
he “did not care” soon acquired importance in his eyes, as
supplying evidence for the support of the evolutionary theory.
The thirty-one years during which he occupied the chair of
natural history at the School of Mines were largely occupied
with palaeontological research. Numerous memoirs on fossil
fishes established many far-reaching morphological facts. The
study of fossil reptiles led to his demonstrating, in the course
of lectures on birds, delivered at the College of Surgeons in 1867,
the fundamental affinity of the two groups which he united
under the title of Sauropsida. An incidental result of the same
course was his proposed rearrangement of the zoological regions
into which P. L. Sclater had divided the world in 1857. Huxley
anticipated, to a large extent, the results at which botanists have
since arrived: he proposed as primary divisions, Arctogaea—to
include the land areas of the northern hemisphere—and
Notogaea for the remainder. Successive waves of life originated
in and spread from the northern area, the survivors of the more
ancient types finding successively a refuge in the south. Though
Huxley had accepted the Darwinian theory as a working
hypothesis, he never succeeded in firmly grasping it in detail.
He thought “evolution might conceivably have taken place
without the development of groups possessing the characters
of species” (Essays, v. 41). His palaeontological researches
ultimately led him to dispense with Darwin. In 1892 he wrote:
“The doctrine of evolution is no speculation, but a generalization
of certain facts ... classed by biologists under the heads
of Embryology and of Palaeontology” (Essays, v. 42). Earlier
in 1881 he had asserted even more emphatically that if the
hypothesis of evolution “had not existed, the palaeontologist
would have had to invent it” (Essays, iv. 44).

From 1870 onwards he was more and more drawn away from
scientific research by the claims of public duty. Some men
yield the more readily to such demands, as their fulfilment
is not unaccompanied by public esteem. But he felt, as he
himself said of Joseph Priestley, “that he was a man and a
citizen before he was a philosopher, and that the duties of the
two former positions are at least as imperative as those of the
latter” (Essays, iii. 13). From 1862 to 1884 he served on no
less than ten Royal Commissions, dealing in every case with
subjects of great importance, and in many with matters of the
gravest moment to the community. He held and filled with
invariable dignity and distinction more public positions than
have perhaps ever fallen to the lot of a scientific man in England.
From 1871 to 1880 he was a secretary of the Royal Society.
From 1881 to 1885 he was president. For honours he cared
little, though they were within his reach; it is said that he
might have received a peerage. He accepted, however, in 1892,
a Privy Councillorship, at once the most democratic and the
most aristocratic honour accessible to an English citizen. In
1870 he was president of the British Association at Liverpool, and
in the same year was elected a member of the newly constituted
London School Board. He resigned the latter position in
1872, but in the brief period during which he acted, probably
more than any man, he left his mark on the foundations of
national elementary education. He made war on the scholastic
methods which wearied the mind in merely taxing the memory;
the children were to be prepared to take their place worthily
in the community. Physical training was the basis; domestic
economy, at any rate for girls, was insisted upon, and for all
some development of the aesthetic sense by means of drawing
and singing. Reading, writing and arithmetic were the indispensable
tools for acquiring knowledge, and intellectual
discipline was to be gained through the rudiments of physical
science. He insisted on the teaching of the Bible partly as a great
literary heritage, partly because he was “seriously perplexed
to know by what practical measures the religious feeling, which
is the essential basis of conduct, was to be kept up, in the present
utterly chaotic state of opinion in these matters, without its
use” (Essays, iii. 397). In 1872 the School of Mines was moved
to South Kensington, and Huxley had, for the first time after
eighteen years, those appliances for teaching beyond the
lecture room, which to the lasting injury of the interests of
biological science in Great Britain had been withheld from
him by the short-sightedness of government. Huxley had
only been able to bring his influence to bear upon his pupils
by oral teaching, and had had no opportunity by personal
intercourse in the laboratory of forming a school. He was now
able to organize a system of instruction for classes of elementary
teachers in the general principles of biology, which indirectly
affected the teaching of the subject throughout the country.

The first symptoms of physical failure to meet the strain of
the scientific and public duties demanded of him made some
rest imperative, and he took a long holiday in Egypt. He still
continued for some years to occupy himself mainly with vertebrate
morphology. But he seemed to find more interest and the
necessary mental stimulus to exertion in lectures, public addresses
and more or less controversial writings. His health, which
had for a time been fairly restored, completely broke down
again in 1885. In 1890 he removed from London to Eastbourne,
where after a painful illness he died on the 29th of
June 1895.


The latter years of Huxley’s life were mainly occupied with contributions
to periodical literature on subjects connected with philosophy
and theology. The effect produced by these on popular
opinion was profound. This was partly due to his position as a
man of science, partly to his obvious earnestness and sincerity, but
in the main to his strenuous and attractive method of exposition.
Such studies were not wholly new to him, as they had more or less
engaged his thoughts from his earliest days. That his views exhibit
some process of development and are not wholly consistent was,
therefore, to be expected, and for this reason it is not easy to
summarize them as a connected body of teaching. They may be
found perhaps in their most systematic form in the volume on Hume
published in 1879.

Huxley’s general attitude to the problems of theology and
philosophy was technically that of scepticism. “I am,” he wrote,
“too much of a sceptic to deny the possibility of anything” (Life, ii.
127). “Doubt is a beneficent demon” (Essays, ix. 56). He was
anxious, nevertheless, to avoid the accusation of Pyrrhonism (Life, ii.
280), but the Agnosticism which he defined to express his position
in 1869 suggests the Pyrrhonist Aphasia. The only approach to
certainty which he admitted lay in the order of nature. “The
conception of the constancy of the order of nature has become the
dominant idea of modern thought.... Whatever may be man’s
speculative doctrines, it is quite certain that every intelligent person
guides his life and risks his fortune upon the belief that the order of
nature is constant, and that the chain of natural causation is never
broken.” He adds, however, that “it by no means necessarily
follows that we are justified in expanding this generalization into the
infinite past” (Essays, iv. 47, 48). This was little more than a pious

reservation, as evolution implies the principle of continuity (l.c. p. 55).
Later he stated his belief even more absolutely: “If there is anything
in the world which I do firmly believe in, it is the universal
validity of the law of causation, but that universality cannot be
proved by any amount of experience” (Essays, ix. 121). The
assertion that “There is only one method by which intellectual truth
can be reached, whether the subject-matter of investigation belongs
to the world of physics or to the world of consciousness” (Essays, ix.
126) laid him open to the charge of materialism, which he vigorously
repelled. His defence, when he rested it on the imperfection of the
physical analysis of matter and force (l.c. p. 131), was irrelevant; he
was on sounder ground when he contended with Berkeley “that our
certain knowledge does not extend beyond our states of consciousness”
(l.c. p. 130). “Legitimate materialism, that is, the extension
of the conceptions and of the methods of physical science to the
highest as well as to the lowest phenomena of vitality, is neither
more nor less than a sort of shorthand idealism” (Essays, i. 194).
While “the substance of matter is a metaphysical unknown quality
of the existence of which there is no proof ... the non-existence of
a substance of mind is equally arguable; ... the result ... is the
reduction of the All to co-existences and sequences of phenomena
beneath and beyond which there is nothing cognoscible” (Essays, ix.
66). Hume had defined a miracle as a “violation of the laws of
nature.” Huxley refused to accept this. While, on the one hand, he
insists that “the whole fabric of practical life is built upon our
faith in its continuity” (Hume, p. 129), on the other “nobody
can presume to say what the order of nature must be”; this “knocks
the bottom out of all a priori objections either to ordinary ‘miracles’
or to the efficacy of prayer” (Essays, v. 133). “If by the term
miracles we mean only extremely wonderful events, there can be no
just ground for denying the possibility of their occurrence” (Hume,
p. 134). Assuming the chemical elements to be aggregates of uniform
primitive matter, he saw no more theoretical difficulty in water
being turned into alcohol in the miracle at Cana, than in sugar
undergoing a similar conversion (Essays, v. 81). The credibility of
miracles with Huxley is a question of evidence. It may be remarked
that a scientific explanation is destructive of the supernatural
character of a miracle, and that the demand for evidence may be
so framed as to preclude the credibility of any historical event.
Throughout his life theology had a strong attraction, not without
elements of repulsion, for Huxley. The circumstances of his early
training, when Paley was the “most interesting Sunday reading
allowed him when a boy” (Life, ii. 57), probably had something to
do with both. In 1860 his beliefs were apparently theistic: “Science
seems to me to teach in the highest and strongest manner the
great truth which is embodied in the Christian conception of entire
surrender to the will of God” (Life, i. 219). In 1885 he formulates
“the perfect ideal of religion” in a passage which has become
almost famous: “In the 8th century B.C. in the heart of a world of
idolatrous polytheists, the Hebrew prophets put forth a conception
of religion which appears to be as wonderful an inspiration of genius
as the art of Pheidias or the science of Aristotle. ‘And what doth
the Lord require of thee, but to do justly, and to love mercy, and to
walk humbly with thy God’” (Essays, iv. 161). Two years later he
was writing: “That there is no evidence of the existence of such a
being as the God of the theologians is true enough” (Life, ii. 162).
He insisted, however, that “atheism is on purely philosophical
grounds untenable” (l.c.). His theism never really advanced
beyond the recognition of “the passionless impersonality of the
unknown and unknowable, which science shows everywhere underlying
the thin veil of phenomena” (Life, i. 239). In other respects
his personal creed was a kind of scientific Calvinism. There is an
interesting passage in an essay written in 1892, “An Apologetic
Eirenicon,” which has not been republished, which illustrates this:
“It is the secret of the superiority of the best theological teachers to
the majority of their opponents that they substantially recognize
these realities of things, however strange the forms in which they
clothe their conceptions. The doctrines of predestination, of original
sin, of the innate depravity of man and the evil fate of the greater
part of the race, of the primacy of Satan in this world, of the essential
vileness of matter, of a malevolent Demiurgus subordinate to a
benevolent Almighty, who has only lately revealed himself, faulty
as they are, appear to me to be vastly nearer the truth than the
‘liberal’ popular illusions that babies are all born good, and that the
example of a corrupt society is responsible for their failure to remain
so; that it is given to everybody to reach the ethical ideal if he will
only try; that all partial evil is universal good, and other optimistic
figments, such as that which represents ‘Providence’ under the
guise of a paternal philanthropist, and bids us believe that everything
will come right (according to our notions) at last.” But his “slender
definite creed,” R. H. Hutton, who was associated with him in
the Metaphysical Society, thought—and no doubt rightly—in no
respect “represented the cravings of his larger nature.”

From 1880 onwards till the very end of his life, Huxley was
continuously occupied in a controversial campaign against orthodox
beliefs. As Professor W. F. R. Weldon justly said of his earlier
polemics: “They were certainly among the principal agents in
winning a larger measure of toleration for the critical examination of
fundamental beliefs, and for the free expression of honest reverent
doubt.” He threw Christianity overboard bodily and with little
appreciation of its historic effect as a civilizing agency. He thought
that “the exact nature of the teachings and the convictions of
Jesus is extremely uncertain” (Essays, v. 348). “What we are
usually pleased to call religion nowadays is, for the most part,
Hellenized Judaism” (Essays, iv. 162). His final analysis of what
“since the second century, has assumed to itself the title of Orthodox
Christianity” is a “varying compound of some of the best and
some of the worst elements of Paganism and Judaism, moulded in
practice by the innate character of certain people of the Western
world” (Essays, v. 142). He concludes “That this Christianity is
doomed to fall is, to my mind, beyond a doubt; but its fall will
neither be sudden nor speedy” (l.c.). He did not omit, however,
to do justice to “the bright side of Christianity,” and was deeply
impressed with the life of Catherine of Siena. Failing Christianity,
he thought that some other “hypostasis of men’s hopes” will arise
(Essays, v. 254). His latest speculations on ethical problems are
perhaps the least satisfactory of his writings. In 1892 he wrote:
“The moral sense is a very complex affair—dependent in part upon
associations of pleasure and pain, approbation and disapprobation,
formed by education in early youth, but in part also on an innate
sense of moral beauty and ugliness (how originated need not be discussed),
which is possessed by some people in great strength, while
some are totally devoid of it” (Life, ii. 305). This is an intuitional
theory, and he compares the moral with the aesthetic sense, which he
repeatedly declares to be intuitive; thus: “All the understanding
in the world will neither increase nor diminish the force of the
intuition that this is beautiful and this is ugly” (Essays, ix. 80). In
the Romanes Lecture delivered in 1894, in which this passage occurs,
he defines “law and morals” to be “restraints upon the struggle
for existence between men in society.” It follows that “the ethical
process is in opposition to the cosmic process,” to which the struggle
for existence belongs (Essays, ix. 31). Apparently he thought that
the moral sense in its origin was intuitional and in its development
utilitarian. “Morality commenced with society” (Essays, v. 52).
The “ethical process” is the “gradual strengthening of the social
bond” (Essays, ix. 35). “The cosmic process has no sort of relation
to moral ends” (l.c. p. 83); “of moral purpose I see no trace in
nature. That is an article of exclusive human manufacture” (Life,
ii. 268). The cosmic process Huxley identified with evil, and the
ethical process with good; the two are in necessary conflict. “The
reality at the bottom of the doctrine of original sin” is the “innate
tendency to self-assertion” inherited by man from the cosmic order
(Essays, ix. 27). “The actions we call sinful are part and parcel of
the struggle for existence” (Life, ii. 282). “The prospect of attaining
untroubled happiness” is “an illusion” (Essays, ix. 44), and the
cosmic process in the long run will get the best of the contest, and
“resume its sway” when evolution enters on its downward course
(l.c. p. 45). This approaches pure pessimism, and though in Huxley’s
view the “pessimism of Schopenhauer is a nightmare” (Essays, ix.
200), his own philosophy of life is not distinguishable, and is often
expressed in the same language. The cosmic order is obviously
non-moral (Essays, ix. 197). That it is, as has been said, immoral
is really meaningless. Pain and suffering are affections which
imply a complex nervous organization, and we are not justified in
projecting them into nature external to ourselves. Darwin and A. R.
Wallace disagreed with Huxley in seeing rather the joyous than the
suffering side of nature. Nor can it be assumed that the descending
scale of evolution will reproduce the ascent, or that man will ever be
conscious of his doom.

As has been said, Huxley never thoroughly grasped the Darwinian
principle. He thought “transmutation may take place without
transition” (Life, i. 173). In other words, that evolution is accomplished
by leaps and not by the accumulation of small variations.
He recognized the “struggle for existence” but not the gradual
adjustment of the organism to its environment which is implied in
“natural selection.” In highly civilized societies he thought that the
former was at an end (Essays, ix. 36) and had been replaced by the
“struggle for enjoyment” (l.c. p. 40). But a consideration of the
stationary population of France might have shown him that the
effect in the one case may be as restrictive as in the other. So far
from natural selection being in abeyance under modern social
conditions, “it is,” as Professor Karl Pearson points out, “something
we run up against at once, almost as soon as we examine a
mortality table” (Biometrika, i. 76). The inevitable conclusion,
whether we like it or not, is that the future evolution of humanity is
as much a part of the cosmic process as its past history, and Huxley’s
attempt to shut the door on it cannot be maintained scientifically.

Authorities.—Life and Letters of Thomas Henry Huxley, by his
son Leonard Huxley (2 vols., 1900); Scientific Memoirs of T. H.
Huxley (4 vols., 1898-1901); Collected Essays by T. H. Huxley
(9 vols., 1898); Thomas Henry Huxley, a Sketch of his Life and Work,
by P. Chalmers Mitchell, M.A. (Oxon., 1900); a critical study
founded on careful research and of great value.
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HUY (Lat. Hoium, and Flem. Hoey), a town of Belgium,
on the right bank of the Meuse, at the point where it is joined
by the Hoyoux. Pop. (1904), 14,164. It is 19 m. E. of Namur
and a trifle less west of Liége. Huy certainly dates from the
7th century, and, according to some, was founded by the emperor

Antoninus in A.D. 148. Its situation is striking, with its grey
citadel crowning a grey rock, and the fine collegiate church
(with a 13th-century gateway) of Notre Dame built against it.
The citadel is now used partly as a depot of military equipment
and partly as a prison. The ruins are still shown of the abbey
of Neumoustier founded by Peter the Hermit on his return
from the first crusade. He was buried there in 1115, and a
statue was erected to his memory in the abbey grounds in
1858. Neumoustier was one of seventeen abbeys in this town
alone dependent on the bishopric of Liége. Huy is surrounded
by vineyards, and the bridge which crosses the Meuse at this
point connects the fertile Hesbaye north of the river with the
rocky and barren Condroz south of it.



HUYGENS, CHRISTIAAN (1629-1695), Dutch mathematician,
mechanician, astronomer and physicist, was born at the Hague
on the 14th of April 1629. He was the second son of Sir
Constantijn Huygens. From his father he received the rudiments
of his education, which was continued at Leiden under A. Vinnius
and F. van Schooten, and completed in the juridical school
of Breda. His mathematical bent, however, soon diverted
him from legal studies, and the perusal of some of his earliest
theorems enabled Descartes to predict his future greatness. In
1649 he accompanied the mission of Henry, count of Nassau,
to Denmark, and in 1651 entered the lists of science as an assailant
of the unsound system of quadratures adopted by Gregory of
St Vincent. This first essay (Exetasis quadraturae circuli,
Leiden, 1651) was quickly succeeded by his Theoremata de
quadratura hyperboles, ellipsis, et circuli; while, in a treatise
entitled De circuli magnitudine inventa, he made, three years
later, the closest approximation so far obtained to the ratio
of the circumference to the diameter of a circle.

Another class of subjects was now to engage his attention.
The improvement of the telescope was justly regarded as a
sine qua non for the advancement of astronomical knowledge.
But the difficulties interposed by spherical and chromatic
aberration had arrested progress in that direction until, in 1655,
Huygens, working with his brother Constantijn, hit upon a
new method of grinding and polishing lenses. The immediate
results of the clearer definition obtained were the detection
of a satellite to Saturn (the sixth in order of distance from its
primary), and the resolution into their true form of the abnormal
appendages to that planet. Each discovery in turn was, according
to the prevailing custom, announced to the learned world under
the veil of an anagram—removed, in the case of the first, by the
publication, early in 1656, of the little tract De Saturni luna
observatio nova; but retained, as regards the second, until
1659, when in the Systema Saturnium the varying appearances
of the so-called “triple planet” were clearly explained as the
phases of a ring inclined at an angle of 28° to the ecliptic. Huygens
was also in 1656 the first effective observer of the Orion nebula;
he delineated the bright region still known by his name, and
detected the multiple character of its nuclear star. His application
of the pendulum to regulate the movement of clocks sprang
from his experience of the need for an exact measure of time
in observing the heavens. The invention dates from 1656;
on the 16th of June 1657 Huygens presented his first “pendulum-clock”
to the states-general; and the Horologium, containing
a description of the requisite mechanism, was published in
1658.

His reputation now became cosmopolitan. As early as 1655
the university of Angers had distinguished him with an honorary
degree of doctor of laws. In 1663, on the occasion of his second
visit to England, he was elected a fellow of the Royal Society,
and imparted to that body in January 1669 a clear and concise
statement of the laws governing the collision of elastic bodies.
Although these conclusions were arrived at independently, and,
as it would seem, several years previous to their publication,
they were in great measure anticipated by the communications
on the same subject of John Wallis and Christopher Wren,
made respectively in November and December 1668.

Huygens had before this time fixed his abode in France.
In 1665 Colbert made to him on behalf of Louis XIV. an offer
too tempting to be refused, and between the following year and
1681 his residence in the philosophic seclusion of the Bibliothèque
du Roi was only interrupted by two short visits to his native
country. His magnum opus dates from this period. The
Horologium oscillatorium, published with a dedication to his
royal patron in 1673, contained original discoveries sufficient
to have furnished materials for half a dozen striking disquisitions.
His solution of the celebrated problem of the “centre of oscillation”
formed in itself an important event in the history of
mechanics. Assuming as an axiom that the centre of gravity
of any number of interdependent bodies cannot rise higher
than the point from which it fell, he arrived, by anticipating
in the particular case the general principle of the conservation
of vis viva, at correct although not strictly demonstrated conclusions.
His treatment of the subject was the first successful
attempt to deal with the dynamics of a system. The determination
of the true relation between the length of a pendulum
and the time of its oscillation; the invention of the theory of
evolutes; the discovery, hence ensuing, that the cycloid is
its own evolute, and is strictly isochronous; the ingenious
although practically inoperative idea of correcting the “circular
error” of the pendulum by applying cycloidal cheeks to clocks—were
all contained in this remarkable treatise. The theorems
on the composition of forces in circular motion with which it
concluded formed the true prelude to Newton’s Principia, and
would alone suffice to establish the claim of Huygens to the
highest rank among mechanical inventors.

In 1681 he finally severed his French connexions, and returned
to Holland. The harsher measures which about that time
began to be adopted towards his co-religionists in France are
usually assigned as the motive of this step. He now devoted
himself during six years to the production of lenses of enormous
focal distance, which, mounted on high poles, and connected with
the eye-piece by means of a cord, formed what were called “aerial
telescopes.” Three of his object-glasses, of respectively 123,
180 and 210 ft. focal length, are in the possession of the Royal
Society. He also succeeded in constructing an almost perfectly
achromatic eye-piece, still known by his name. But his researches
in physical optics constitute his chief title-deed to
immortality. Although Robert Hooke in 1668 and Ignace
Pardies in 1672 had adopted a vibratory hypothesis of light,
the conception was a mere floating possibility until Huygens
provided it with a sure foundation. His powerful scientific
imagination enabled him to realize that all the points of a wave-front
originate partial waves, the aggregate effect of which is
to reconstitute the primary disturbance at the subsequent stages
of its advance, thus accomplishing its propagation; so that
each primary undulation is the envelope of an indefinite number
of secondary undulations. This resolution of the original wave
is the well-known “Principle of Huygens,” and by its means
he was enabled to prove the fundamental laws of optics, and
to assign the correct construction for the direction of the extraordinary
ray in uniaxial crystals. These investigations, together
with his discovery of the “wonderful phenomenon” of polarization,
are recorded in his Traité de la lumière, published at
Leiden in 1690, but composed in 1678. In the appended
treatise Sur la Cause de la pesanteur, he rejected gravitation as
a universal quality of matter, although admitting the Newtonian
theory of the planetary revolutions. From his views on centrifugal
force he deduced the oblate figure of the earth, estimating
its compression, however, at little more than one-half its actual
amount.

Huygens never married. He died at the Hague on the 8th
of June 1695, bequeathing his manuscripts to the university
of Leiden, and his considerable property to the sons of his
younger brother. In character he was as estimable as he was
brilliant in intellect. Although, like most men of strong originative
power, he assimilated with difficulty the ideas of others, his
tardiness sprang rather from inability to depart from the track
of his own methods than from reluctance to acknowledge the
merits of his competitors.


In addition to the works already mentioned, his Cosmotheoros—a

speculation concerning the inhabitants of the planets—was printed
posthumously at the Hague in 1698, and appeared almost simultaneously
in an English translation. A volume entitled Opera posthuma
(Leiden, 1703) contained his “Dioptrica,” in which the ratio between
the respective focal lengths of object-glass and eye-glass is given as
the measure of magnifying power, together with the shorter essays
De vitris figurandis, De corona et parheliis, &c. An early tract De
ratiociniis in ludo aleae, printed in 1657 with Schooten’s Exercitationes
mathematicae, is notable as one of the first formal treatises on
the theory of probabilities; nor should his investigations of the
properties of the cissoid, logarithmic and catenary curves be left
unnoticed. His invention of the spiral watch-spring was explained
in the Journal des savants (Feb. 25, 1675). An edition of his
works was published by G. J.’s Gravesande, in four quarto volumes
entitled Opera varia (Leiden, 1724) and Opera reliqua (Amsterdam,
1728). His scientific correspondence was edited by P. J. Uylenbroek
from manuscripts preserved at Leiden, with the title Christiani
Hugenii aliorumque seculi XVII. virorum celebrium exercitationes
mathematicae et philosophicae (the Hague, 1833).

The publication of a monumental edition of the letters and works
of Huygens was undertaken at the Hague by the Société Hollandaise
des Sciences, with the heading Œuvres de Christian Huygens (1888),
&c. Ten quarto volumes, comprising the whole of his correspondence,
had already been issued in 1905. A biography of Huygens was
prefixed to his Opera varia (1724); his Éloge in the character of a
French academician was printed by J. A. N. Condorcet in 1773.
Consult further: P. J. Uylenbroek, Oratio de fratribus Christiano
atque Constantino Hugenio (Groningen, 1838); P. Harting, Christiaan
Huygens in zijn Leven en Werken geschetzt (Groningen, 1868); J. B. J.
Delambre, Hist. de l’astronomie moderne (ii. 549); J. E. Montucla,
Hist. des mathématiques (ii. 84, 412, 549); M. Chasles, Aperçu historique
sur l’origine des méthodes en géometrie, pp. 101-109; E. Dühring,
Kritische Geschichte der allgemeinen Principien der Mechanik,
Abschnitt (ii. 120, 163, iii. 227); A. Berry, A Short History of
Astronomy, p. 200; R. Wolf, Geschichte der Astronomie, passim;
Houzeau, Bibliographie astronomique (ii. 169); F. Kaiser, Astr. Nach.
(xxv. 245, 1847); Tijdschrift voor de Wetenschappen (i. 7, 1848);
Allgemeine deutsche Biographie (M. B. Cantor); J. C. Poggendorff,
Biog. lit. Handwörterbuch.



(A. M. C.)



HUYGENS, SIR CONSTANTIJN (1596-1687), Dutch poet
and diplomatist, was born at the Hague on the 4th of September
1596. His father, Christiaan Huygens, was secretary to the
state council, and a man of great political importance. At the
baptism of the child, the city of Breda was one of his sponsors,
and the admiral Justinus van Nassau the other. He was trained
in every polite accomplishment, and before he was seven could
speak French with fluency. He was taught Latin by Johannes
Dedelus, and soon became a master of classic versification.
He developed not only extraordinary intellectual gifts but
great physical beauty and strength, and was one of the most
accomplished athletes and gymnasts of his age; his skill in
playing the lute and in the arts of painting and engraving
attracted general attention before he began to develop his
genius as a writer. In 1616 he proceeded, with his elder brother,
to the university of Leiden. He stayed there only one year,
and in 1618 went to London with the English ambassador
Dudley Carleton; he remained in London for some months,
and then went to Oxford, where he studied for some time in the
Bodleian Library, and to Woodstock, Windsor and Cambridge;
he was introduced at the English court, and played the lute
before James I. The most interesting feature of this visit was
the intimacy which sprang up between the young Dutch poet
and Dr Donne, for whose genius Huygens preserved through
life an unbounded admiration. He returned to Holland in
company with the English contingent of the synod of Dort,
and in 1619 he proceeded to Venice in the diplomatic service
of his country; on his return he nearly lost his life by a foolhardy
exploit, namely, the scaling of the topmost spire of Strassburg
cathedral. In 1621 he published one of his most weighty and
popular poems, his Batava Tempe, and in the same year he
proceeded again to London, as secretary to the ambassador,
Wijngaerdan, but returned in three months. His third diplomatic
visit to England lasted longer, from the 5th of December
1621 to the 1st of March 1623. During his absence, his volume
of satires, ’t Costelick Mal, dedicated to Jacob Cats, appeared
at the Hague. In the autumn of 1622 he was knighted by
James I. He published a large volume of miscellaneous poems
in 1625 under the title of Otiorum libri sex; and in the same
year he was appointed private secretary to the stadholder.
In 1627 Huygens married Susanna van Baerle, and settled at
the Hague; four sons and a daughter were born to them. In
1630 Huygens was called to a seat in the privy council, and he
continued to exercise political power with wisdom and vigour
for many years, under the title of the lord of Zuylichem. In
1634 he is supposed to have completed his long-talked-of version
of the poems of Donne, fragments of which exist. In 1637 his
wife died, and he immediately began to celebrate the virtues
and pleasures of their married life in the remarkable didactic
poem called Dagwerck, which was not published till long afterwards.
From 1639 to 1641 he occupied himself by building
a magnificent house and garden outside the Hague, and by
celebrating their beauties in a poem entitled Hofwijck, which
was published in 1653. In 1647 he wrote his beautiful poem
of Oogentroost or “Eye Consolation,” to gratify his blind friend
Lucretia van Trollo. He made his solitary effort in the dramatic
line in 1657, when he brought out his comedy of Trijntje Cornelis
Klacht, which deals, in rather broad humour, with the adventures
of the wife of a ship’s captain at Zaandam. In 1658 he rearranged
his poems, and issued them with many additions, under the
title of Corn Flowers. He proposed to the government that
the present highway from the Hague to the sea at Scheveningen
should be constructed, and during his absence on a diplomatic
mission to the French court in 1666 the road was made as a
compliment to the venerable statesman, who expressed his
gratitude in a descriptive poem entitled Zeestraet. Huygens
edited his poems for the last time in 1672, and died in his ninety-first
year, on the 28th of March 1687. He was buried, with the
pomp of a national funeral, in the church of St Jacob, on the
4th of April. His second son, Christiaan, the eminent astronomer,
is noticed separately.


Constantijn Huygens is the most brilliant figure in Dutch literary
history. Other statesmen surpassed him in political influence, and
at least two other poets surpassed him in the value and originality of
their writings. But his figure was more dignified and splendid, his
talents were more varied, and his general accomplishments more
remarkable than those of any other person of his age, the greatest
age in the history of the Netherlands. Huygens is the grand seigneur
of the republic, the type of aristocratic oligarchy, the jewel and
ornament of Dutch liberty. When we consider his imposing character
and the positive value of his writings, we may well be surprised that
he has not found a modern editor. It is a disgrace to Dutch scholarship
that no complete collection of the writings of Huygens exists.
His autobiography, De vita propria sermonum libri duo, did not see
the light until 1817, and his remarkable poem, Cluyswerck, was not
printed until 1841. As a poet Huygens shows a finer sense of form
than any other early Dutch writer; the language, in his hands,
becomes as flexible as Italian. His epistles and lighter pieces, in particular,
display his metrical ease and facility to perfection.



(E. G.)



HUYSMANS, the name of four Flemish painters who matriculated
in the Antwerp gild in the 17th century. Cornelis the
elder, apprenticed in 1633, passed for a mastership in 1636,
and remained obscure. Jacob, apprenticed to Frans Wouters
in 1650, wandered to England towards the close of the reign
of Charles II., and competed with Lely as a fashionable portrait
painter. He executed a portrait of the queen, Catherine of
Braganza, now in the national portrait gallery, and Horace
Walpole assigns to him the likeness of Lady Bellasys, catalogued
at Hampton Court as a work of Lely. His portrait of Izaak
Walton in the National Gallery shows a disposition to imitate
the styles of Rubens and Van Dyke. According to most accounts
he died in London in 1696. Jan Baptist Huysmans, born at
Antwerp in 1654, matriculated in 1676-1677, and died there in
1715-1716. He was younger brother to Cornelis Huysmans
the second, who was born at Antwerp in 1648, and educated
by Gaspar de Wit and Jacob van Artois. Of Jan Baptist little
or nothing has been preserved, except that he registered numerous
apprentices at Antwerp, and painted a landscape dated 1697
now in the Brussels museum. Cornelis the second is the only
master of the name of Huysmans whose talent was largely
acknowledged. He received lessons from two artists, one of
whom was familiar with the Roman art of the Poussins, whilst
the other inherited the scenic style of the school of Rubens.
He combined the two in a rich, highly coloured, and usually
effective style, which, however, was not free from monotony.

Seldom attempting anything but woodside views with fancy
backgrounds, half Italian, half Flemish, he painted with great
facility, and left numerous examples behind. At the outset
of his career he practised at Malines, where he married in 1682,
and there too he entered into some business connexion with
van der Meulen, for whom he painted some backgrounds.
In 1706 he withdrew to Antwerp, where he resided till 1717,
returning then to Malines, where he died on the 1st of June
1727.


Though most of his pictures were composed for cabinets rather than
churches, he sometimes emulated van Artois in the production of
large sacred pieces, and for many years his “Christ on the Road to
Emmaus” adorned the choir of Notre Dame of Malines. In the
gallery of Nantes, where three of his small landscapes are preserved,
there hangs an “Investment of Luxembourg,” by van der Meulen, of
which he is known to have laid in the background. The national
galleries of London and Edinburgh contain each one example of his
skill. Blenheim, too, and other private galleries in England, possess
one or more of his pictures. But most of his works are on the
European continent.





HUYSMANS, JORIS KARL (1848-1907), French novelist,
was born at Paris on the 5th of February 1848. He belonged
to a family of artists of Dutch extraction; he entered the
ministry of the interior, and was pensioned after thirty years’
service. His earliest venture in literature, Le Drageoir à épices
(1874), contained stories and short prose poems showing the
influence of Baudelaire. Marthe (1876), the life of a courtesan,
was published in Brussels, and Huysmans contributed a story,
“Sac au dos,” to Les Soirées de Médan, the collection of stories
of the Franco-German war published by Zola. He then produced
a series of novels of everyday life, including Les Sœurs
Vatard (1879), En Ménage (1881), and À vau-l’eau (1882), in which
he outdid Zola in minute and uncompromising realism. He
was influenced, however, more directly by Flaubert and the
brothers de Goncourt than by Zola. In L’Art moderne (1883)
he gave a careful study of impressionism and in Certains (1889)
a series of studies of contemporary artists, À Rebours (1884),
the history of the morbid tastes of a decadent aristocrat, des
Esseintes, created a literary sensation, its caricature of literary
and artistic symbolism covering much of the real beliefs of the
leaders of the aesthetic revolt. In Là-Bas Huysmans’s most
characteristic hero, Durtal, makes his appearance. Durtal
is occupied in writing the life of Gilles de Rais; the insight
he gains into Satanism is supplemented by modern Parisian
students of the black art; but already there are signs of a
leaning to religion in the sympathetic figures of the religious
bell-ringer of Saint Sulpice and his wife. En Route (1895) relates
the strange conversion of Durtal to mysticism and Catholicism
in his retreat to La Trappe. In La Cathédrale (1898), Huysmans’s
symbolistic interpretation of the cathedral of Chartres, he
develops his enthusiasm for the purity of Catholic ritual. The
life of Sainte Lydwine de Schiedam (1901), an exposition of
the value of suffering, gives further proof of his conversion;
and L’Oblat (1903) describes Durtal’s retreat to the Val des
Saints, where he is attached as an oblate to a Benedictine
monastery. Huysmans was nominated by Edmond de Goncourt
as a member of the Académie des Goncourt. He died
as a devout Catholic, after a long illness of cancer in the palate
on the 13th of May 1907. Before his death he destroyed his
unpublished MSS. His last book was Les Foules de Lourdes
(1906).


See Arthur Symons, Studies in two Literatures (1897) and The
Symbolist Movement in Literature (1899); Jean Lionnet in L’Évolution
des idées (1903); Eugène Gilbert in France et Belgique (1905);
J. Sargeret in Les Grands convertis (1906).





HUYSUM, JAN VAN (1682-1749), Dutch painter, was born
at Amsterdam in 1682, and died in his native city on the 8th
of February 1749. He was the son of Justus van Huysum,
who is said to have been expeditious in decorating doorways,
screens and vases. A picture by this artist is preserved in
the gallery of Brunswick, representing Orpheus and the Beasts
in a wooded landscape, and here we have some explanation
of his son’s fondness for landscapes of a conventional and Arcadian
kind; for Jan van Huysum, though skilled as a painter of still
life, believed himself to possess the genius of a landscape painter.
Half his pictures in public galleries are landscapes, views of
imaginary lakes and harbours with impossible ruins and classic
edifices, and woods of tall and motionless trees—the whole
very glossy and smooth, and entirely lifeless. The earliest dated
work of this kind is that of 1717, in the Louvre, a grove with
maidens culling flowers near a tomb, ruins of a portico, and a
distant palace on the shores of a lake bounded by mountains.

It is doubtful whether any artist ever surpassed van Huysum
in representing fruit and flowers. It has been said that his
fruit has no savour and his flowers have no perfume—in other
words, that they are hard and artificial—but this is scarcely
true. In substance fruit and flower are delicate and finished
imitations of nature in its more subtle varieties of matter.
The fruit has an incomparable blush of down, the flowers have
a perfect delicacy of tissue. Van Huysum, too, shows supreme
art in relieving flowers of various colours against each other,
and often against a light and transparent background. He
is always bright, sometimes even gaudy. Great taste and
much grace and elegance are apparent in the arrangement of
bouquets and fruit in vases adorned with bas reliefs or in baskets
on marble tables. There is exquisite and faultless finish everywhere.
But what van Huysum has not is the breadth, the
bold effectiveness, and the depth of thought of de Heem, from
whom he descends through Abraham Mignon.


Some of the finest of van Huysum’s fruit and flower pieces have
been in English private collections: those of 1723 in the earl of
Ellesmere’s gallery, others of 1730-1732 in the collections of Hope
and Ashburton. One of the best examples is now in the National
Gallery (1736-1737). No public museum has finer and more numerous
specimens than the Louvre, which boasts of four landscapes and
six panels with still life; then come Berlin and Amsterdam with four
fruit and flower pieces; then St Petersburg, Munich, Hanover,
Dresden, the Hague, Brunswick, Vienna, Carlsruhe and Copenhagen.





HWANG HO [Hoang Ho], the second largest river in China.
It is known to foreigners as the Yellow river—a name which
is a literal translation of the Chinese. It rises among the Kuenlun
mountains in central Asia, its head-waters being in close
proximity to those of the Yangtsze-Kiang. It has a total
length of about 2400 m. and drains an area of approximately
400,000 sq. m. The main stream has its source in two lakes
named Tsaring-nor and Oring-nor, lying about 35° N., 97° E.,
and after flowing with a south-easterly course it bends sharply
to the north-west and north, entering China in the province
of Kansuh in lat. 36°. After passing Lanchow-fu, the capital
of this province, the river takes an immense sweep to the north
and north-east, until it encounters the rugged barrier ranges
that here run north and south through the provinces of Shansi
and Chihli. By these ranges it is forced due south for 500 m.,
forming the boundary between the provinces of Shansi and
Shensi, until it finds an outlet eastwards at Tung Kwan—a
pass which for centuries has been renowned as the gate of Asia,
being indeed the sole commercial passage between central
China and the West. At Tung Kwan the river is joined by its
only considerable affluent in China proper, the Wei (Wei-ho),
which drains the large province of Shensi, and the combined
volume of water continues its way at first east and then north-east
across the great plain to the sea. At low water in the winter
season the discharge is only about 36,000 cub. ft. per second,
whereas during the summer flood it reaches 116,000 ft. or more.
The amount of sediment carried down is very large, though
no accurate observations have been made. In the account
of Lord Macartney’s embassy, which crossed the Yellow river
in 1792, it was calculated to be 17,520 million cub. ft. a year,
but this is considered very much over the mark. Two reasons,
however, combine to render it probable that the sedimentary
matter is very large in proportion to the volume of water:
the first being the great fall, and the consequently rapid current
over two-thirds of the river’s course; the second that the
drainage area is nearly all covered with deposits of loess, which,
being very friable, readily gives way before the rainfall and
is washed down in large quantity. The ubiquity of this loess
or yellow earth, as the Chinese call it, has in fact given its
name both to the river which carries it in solution and to the
sea (the Yellow Sea) into which it is discharged. It is calculated

by Dr Guppy (Journal of China Branch of Royal Asiatic Society,
vol. xvi.) that the sediment brought down by the three northern
rivers of China, viz., the Yangtsze, the Hwang-ho and the
Peiho, is 24,000 million cub. ft. per annum, and is sufficient
to fill up the whole of the Yellow Sea and the Gulf of Pechili
in the space of about 36,000 years.


Unlike the Yangtsze, the Hwang-ho is of no practical value for
navigation. The silt and sand form banks and bars at the mouth,
the water is too shallow in winter and the current is too strong in
summer, and, further, the bed of the river is continually shifting.
It is this last feature which has earned for the river the name “China’s
sorrow.” As the silt-laden waters debouch from the rocky bed of the
upper reaches on to the plains, the current slackens, and the coarser
detritus settles on the bottom. By degrees the bed rises, and the
people build embankments to prevent the river from overflowing.
As the bed rises the embankments must be raised too, until the stream
is flowing many feet above the level of the surrounding country.
As time goes on the situation becomes more and more dangerous;
finally, a breach occurs, and the whole river pours over the country,
carrying destruction and ruin with it. If the breach cannot be repaired
the river leaves its old channel entirely and finds a new exit
to the sea along the line of least resistance. Such in brief has been
the story of the river since the dawn of Chinese history. At various
times it has discharged its waters alternately on one side or the other
of the great mass of mountains forming the promontory of Shantung,
and by mouths as far apart from each other as 500 m. At each
change it has worked havoc and disaster by covering the cultivated
fields with 2 or 3 ft. of sand and mud.

A great change in the river’s course occurred in 1851, when a
breach was made in the north embankment near Kaifengfu in Honan.
At this point the river bed was some 25 ft. above the plain; the
water consequently forsook the old channel entirely and poured over
the level country, finally seizing on the bed of a small river called
the Tsing, and thereby finding an exit to the sea. Since that time
the new channel thus carved out has remained the proper course of
the river, the old or southerly channel being left quite dry. It required
some fifteen or more years to repair damages from this outbreak,
and to confine the stream by new embankments. After that
there was for a time comparative immunity from inundations, but
in 1882 fresh outbursts again began. The most serious of all took
place in 1887, when it appeared probable that there would be again a
permanent change in the river’s course. By dint of great exertions,
however, the government succeeded in closing the breach, though
not till January 1889, and not until there had been immense destruction
of life and property. The outbreak on this occasion occurred, as
all the more serious outbreaks have done, in Honan, a few miles west
of the city of Kaifengfu. The stream poured itself over the level and
fertile country to the southwards, sweeping whole villages before
it, and converting the plain into one vast lake. The area affected
was not less than 50,000 sq. m. and the loss of life was computed at
over one million. Since 1887 there have been a series of smaller
outbreaks, mostly at points lower down and in the neighbourhood of
Chinanfu, the capital of Shantung. These perpetually occurring
disasters entail a heavy expense on the government; and from the
mere pecuniary point of view it would well repay them to call in the
best foreign engineering skill available, an expedient, however, which
has not commended itself to the Chinese authorities.



(G. J.)



HWICCE, one of the kingdoms of Anglo-Saxon Britain. Its
exact dimensions are unknown; they probably coincided with
those of the old diocese of Worcester, the early bishops of
which bore the title “Episcopus Hwicciorum.” It would therefore
include Worcestershire, Gloucestershire except the Forest
of Dean, the southern half of Warwickshire, and the neighbourhood
of Bath. The name Hwicce survives in Wychwood in
Oxfordshire and Whichford in Warwickshire. These districts,
or at all events the southern portion of them, were according
to the Anglo-Saxon Chronicle, s.a. 577, originally conquered
by the West Saxons under Ceawlin. In later times, however,
the kingdom of the Hwicce appears to have been always subject
to Mercian supremacy, and possibly it was separated from
Wessex in the time of Edwin. The first kings of whom we read
were two brothers, Eanhere and Eanfrith, probably contemporaries
of Wulfhere. They were followed by a king named Osric,
a contemporary of Æthelred, and he by a king Oshere. Oshere
had three sons who reigned after him, Æthelheard, Æthelweard
and Æthelric. The two last named appear to have been reigning
in the year 706. At the beginning of Offa’s reign we again find
the kingdom ruled by three brothers, named Eanberht, Uhtred
and Aldred, the two latter of whom lived until about 780. After
them the title of king seems to have been given up. Their
successor Æthelmund, who was killed in a campaign against
Wessex in 802, is described only as an earl. The district remained
in possession of the rulers of Mercia until the fall of that
kingdom. Together with the rest of English Mercia it submitted
to King Alfred about 877-883 under Earl Æthelred, who possibly
himself belonged to the Hwicce. No genealogy or list of kings
has been preserved, and we do not know whether the dynasty
was connected with that of Wessex or Mercia.


See Bede, Historia eccles. (edited by C. Plummer) iv. 13 (Oxford,
1896); W. de G. Birch, Cartularium Saxonicum, 43, 51, 76, 85, 116, 117,
122, 163, 187, 232, 233, 238 (Oxford, 1885-1889).



(F. G. M. B.)



HYACINTH (Gr. hyakinthos), also called Jacinth (through Ital.
giacinto), one of the most popular of spring garden flowers. It
was in cultivation prior to 1597, at which date it is mentioned
by Gerard. Rea in 1665 mentions several single and double
varieties as being then in English gardens, and Justice in 1754
describes upwards of fifty single-flowered varieties, and nearly
one hundred double-flowered ones, as a selection of the best from
the catalogues of two then celebrated Dutch growers. One of
the Dutch sorts, called La Reine de Femmes, a single white,
is said to have produced from thirty-four to thirty-eight flowers
in a spike, and on its first appearance to have sold for 50 guilders
a bulb; while one called Overwinnaar, or Conqueror, a double
blue, sold at first for 100 guilders, Gloria Mundi for 500 guilders,
and Koning Saloman for 600 guilders. Several sorts are at
that date mentioned as blooming well in water-glasses. Justice
relates that he himself raised several very valuable double-flowered
kinds from seeds, which many of the sorts he describes
are noted for producing freely.

The original of the cultivated hyacinth, Hyacinthus orientalis,
a native of Greece and Asia Minor, is by comparison an insignificant
plant, bearing on a spike only a few small, narrow-lobed,
washy blue flowers, resembling in form those of our common
blue-bell. So great has been the improvement effected by the
florists, and chiefly by the Dutch, that the modern hyacinth
would scarcely be recognized as the descendant of the type above
referred to, the spikes being long and dense, composed of a large
number of flowers; the spikes produced by strong bulbs not
unfrequently measure 6 to 9 in. in length and from 7 to 9 in.
in circumference, with the flowers closely set on from bottom to
top. Of late years much improvement has been effected in the
size of the individual flowers and the breadth of their recurving
lobes, as well as in securing increased brilliancy and depth of
colour.

The peculiarities of the soil and climate of Holland are so very
favourable to their production that Dutch florists have made a
specialty of the growth of those and other bulbous-rooted flowers.
Hundreds of acres are devoted to the growth of hyacinths in the
vicinity of Haarlem, and bring in a revenue of several hundreds
of thousands of pounds. Some notion of the vast number
imported into England annually may be formed from the fact
that, for the supply of flowering plants to Covent Garden, one
market grower alone produces from 60,000 to 70,000 in pots
under glass, their blooming period being accelerated by artificial
heat, and extending from Christmas onwards until they bloom
naturally in the open ground.

In the spring flower garden few plants make a more effective
display than the hyacinth. Dotted in clumps in the flower
borders, and arranged in masses of well-contrasted colours In
beds in the flower garden, there are no flowers which impart
during their season—March and April—a gayer tone to the parterre.
The bulbs are rarely grown a second time, either for
indoor or outdoor culture, though with care they might be
utilized for the latter purpose; and hence the enormous numbers
which are procured each recurring year from Holland.

The first hyacinths were single-flowered, but towards the close
of the 17th century double-flowered ones began to appear, and
till a recent period these bulbs were the most esteemed. At
the present time, however, the single-flowered sorts are in the
ascendant, as they produce more regular and symmetrical spikes
of blossom, the flowers being closely set and more or less horizontal
in direction, while most of the double sorts have the bells distant
and dependent, so that the spike is loose and by comparison

ineffective. For pot culture, and for growth in water-glasses
especially, the single-flowered sorts are greatly to be preferred.
Few if any of the original kinds are now in cultivation, a succession
of new and improved varieties having been raised, the
demand for which is regulated in some respects by fashion.


The hyacinth delights in a rich light sandy soil. The Dutch incorporate
freely with their naturally light soil a compost consisting
of one-third coarse sea or river sand, one-third rotten cow dung
without litter and one-third leaf-mould. The soil thus renovated
retains its qualities for six or seven years, but hyacinths are not
planted upon the same place for two years successively, intermediary
crops of narcissus, crocus or tulips being taken. A good compost for
hyacinths is sandy loam, decayed leaf-mould, rotten cow dung and
sharp sand in equal parts, the whole being collected and laid up in a
heap and turned over occasionally. Well-drained beds made up of
this soil, and refreshed with a portion of new compost annually,
would grow the hyacinth to perfection. The best time to plant the
bulbs is towards the end of September and during October; they
should be arranged in rows, 6 to 8 in. asunder, there being four rows
in each bed. The bulbs should be sunk about 4 to 6 in. deep, with a
small quantity of clean sand placed below and around each of them.
The beds should be covered with decayed tan-bark, coco-nut fibre or
half-rotten dung litter. As the flower-stems appear, they are tied to
rigid but slender stakes to preserve them from accident. If the bulbs
are at all prized, the stems should be broken off as soon as the flowering
is over, so as not to exhaust the bulbs; the leaves, however, must
be allowed to grow on till matured, but as soon as they assume a
yellow colour, the bulbs are taken up, the leaves cut off near their
base, and the bulbs laid out in a dry, airy, shady place to ripen, after
which they are cleaned of loose earth and skin, ready for storing.
It is the practice in Holland, about a month after the bloom, or when
the tips of the leaves assume a withered appearance, to take up the
bulbs, and to lay them sideways on the ground, covering them with
an inch or two of earth. About three weeks later they are again
taken up and cleaned. In the store-room they should be kept dry,
well-aired and apart from each other.

Few plants are better adapted than the hyacinth for pot culture
as greenhouse decorative plants; and by the aid of forcing they may
be had in bloom as early as Christmas. They flower fairly well in
5-in. pots, the stronger bulbs in 6-in. pots. To bloom at Christmas,
they should be potted early in September, in a compost resembling
that already recommended for the open-air beds; and, to keep up a
succession of bloom, others should be potted at intervals of a few
weeks till the middle or end of November. The tops of the bulbs
should be about level with the soil, and if a little sand is put immediately
around them so much the better. The pots should be set
in an open place on a dry hard bed of ashes, and be covered over to a
depth of 6 or 8 in. with the same material or with fibre or soil; and
when the roots are well developed, which will take from six to eight
weeks, they may be removed to a frame, and gradually exposed to
light, and then placed in a forcing pit in a heat of from 60 to 70°.
When the flowers are fairly open, they may be removed to the greenhouse
or conservatory.

The hyacinth may be very successfully grown in glasses for ornament
in dwelling-houses. The glasses are filled to the neck with rain
or even tap water, a few lumps of charcoal being dropped into them.
The bulbs are placed in the hollow provided for them, so that their
base just touches the water. This may be done in September or
October. They are then set in a dark cupboard for a few weeks till
roots are freely produced, and then gradually exposed to light. The
early-flowering single white Roman hyacinth, a small-growing pure
white variety, remarkable for its fragrance, is well adapted for
forcing, as it can be had in bloom if required by November. For
windows it grows well in the small glasses commonly used for
crocuses; and for decorative purposes should be planted about five
bulbs in a 5-in. pot, or in pans holding a dozen each. If grown for
cut flowers it can be planted thickly in boxes of any convenient size.
It is highly esteemed during the winter months by florists.

The Spanish hyacinth (H. amethystinus) and H. azureus are
charming little bulbs for growing in masses in the rock garden or front
of the flower border. The older botanists included in the genus
Hyacinthus species of Muscari, Scilla and other genera of bulbous
Liliaceae, and the name of hyacinth is still popularly applied to
several other bulbous plants. Thus Muscari botryoides is the grape
hyacinth, 6 in., blue or white, the handsomest; M. moschatum, the
musk hyacinth, 10 in., has peculiar livid greenish-yellow flowers and
a strong musky odour; M. comosum var. monstrosum, the feather
hyacinth, bears sterile flowers broken up into a featherlike mass;
M. racemosum, the starch hyacinth, is a native with deep blue plum-scented
flowers. The Cape hyacinth is Galtonia candicans, a magnificent
border plant, 3-4 ft. high, with large drooping white bell-shaped
flowers; the star hyacinth, Scilla amoena; the Peruvian hyacinth
or Cuban lily, S. peruviana, a native of the Mediterranean region, to
which Linnaeus gave the species name peruviana on a mistaken
assumption of its origin; the wild hyacinth or blue-bell, known
variously as Endymion nonscriptum, Hyacinthus nonscriptus or
Scilla nutans; the wild hyacinth of western North America, Camassia
esculenta. They all flourish in good garden soil of a gritty nature.





HYACINTH, or Jacinth, in mineralogy, a variety of zircon
(q.v.) of yellowish red colour, used as a gem-stone. The hyacinthus
of ancient writers must have been our sapphire, or blue corundum,
while the hyacinth of modern mineralogists may have been
the stone known as lyncurium (λυγκούριον). The Hebrew
word leshem, translated ligure in the Authorized Version (Ex.
xxviii. 19), from the λιγύριον of the Septuagint, appears in
the Revised Version as jacinth, but with a marginal alternative
of amber. Both jacinth and amber may be reddish yellow,
but their identification is doubtful. As our jacinth (zircon)
is not known in ancient Egyptian work, Professor Flinders
Petrie has suggested that the leshem may have been a yellow
quartz, or perhaps agate. Some old English writers describe
the jacinth as yellow, whilst others refer to it as a blue stone,
and the hyacinthus of some authorities seems undoubtedly to
have been our sapphire. In Rev. xx. 20 the Revised Version
retains the word jacinth, but gives sapphire as an alternative.

Most of the gems known in trade as hyacinth are only garnets—generally
the deep orange-brown hessonite or cinnamon-stone—and
many of the antique engraved stones reputed to be hyacinth
are probably garnets. The difference may be detected optically,
since the garnet is singly and the hyacinth doubly refracting;
moreover the specific gravity affords a simple means of diagnosis,
that of garnet being only about 3.7, whilst hyacinth may have
a density as high as 4.7. Again, it was shown many years ago
by Sir A. H. Church that most hyacinths, when examined by
the spectroscope, show a series of dark absorption bands, due
perhaps to the presence of some rare element such as uranium
or erbium.

Hyacinth is not a common mineral. It occurs, with other
zircons, in the gem-gravels of Ceylon, and very fine stones have
been found as pebbles at Mudgee in New South Wales. Crystals
of zircon, with all the typical characters of hyacinth, occur at
Expailly, Le Puy-en-Velay, in Central France, but they are not
large enough for cutting. The stones which have been called
Compostella hyacinths are simply ferruginous quartz from
Santiago de Compostella in Spain.

(F. W. R.*)



HYACINTHUS,1 in Greek mythology, the youngest son of the
Spartan king Amyclas, who reigned at Amyclae (so Pausanias
iii. 1. 3, iii. 19. 5; and Apollodorus i. 3. 3, iii. 10. 3). Other
stories make him son of Oebalus, of Eurotas, or of Pierus
and the nymph Clio (see Hyginus, Fabulae, 271; Lucian, De
saltatione, 45, and Dial. deor. 14). According to the general
story, which is probably late and composite, his great beauty
attracted the love of Apollo, who killed him accidentally when
teaching him to throw the discus (quoit); others say that
Zephyrus (or Boreas) out of jealousy deflected the quoit so that
it hit Hyacinthus on the head and killed him. According to the
representation on the tomb at Amyclae (Pausanias, loc. cit.)
Hyacinthus was translated into heaven with his virgin sister
Polyboea. Out of his blood there grew the flower known as
the hyacinth, the petals of which were marked with the mournful
exclamation AI, AI, “alas” (cf. “that sanguine flower inscribed
with woe”). This Greek hyacinth cannot have been the flower
which now bears the name: it has been identified with a species
of iris and with the larkspur (Delphinium Aiacis), which appear
to have the markings described. The Greek hyacinth was also
said to have sprung from the blood of Ajax. Evidently the
Greek authorities confused both the flowers and the traditions.

The death of Hyacinthus was celebrated at Amyclae by the
second most important of Spartan festivals, the Hyacinthia,
which took place in the Spartan month Hecatombeus. What
month this was is not certain. Arguing from Xenophon (Hell.
iv. 5) we get May; assuming that the Spartan Hecatombeus
is the Attic Hecatombaion, we get July; or again it may be the
Attic Scirophorion, June. At all events the Hyacinthia was an
early summer festival. It lasted three days, and the rites
gradually passed from mourning for Hyacinthus to rejoicings

in the majesty of Apollo, the god of light and warmth, and giver
of the ripe fruits of the earth (see a passage from Polycrates,
Laconica, quoted by Athenaeus 139 d; criticized by L. R.
Farnell, Cults of the Greek States, iv. 266 foll.). This festival is
clearly connected with vegetation, and marks the passage from
the youthful verdure of spring to the dry heat of summer and
the ripening of the corn.

The precise relation which Apollo bears to Hyacinthus is
obscure. The fact that at Tarentum a Hyacinthus tomb is
ascribed by Polybius to Apollo Hyacinthus (not Hyacinthius)
has led some to think that the personalities are one, and that
the hero is merely an emanation from the god; confirmation
is sought in the Apolline appellation τετράχειρ, alleged by
Hesychius to have been used in Laconia, and assumed to describe
a composite figure of Apollo-Hyacinthus. Against this theory
is the essential difference between the two figures. Hyacinthus
is a chthonian vegetation god whose worshippers are afflicted
and sorrowful; Apollo, though interested in vegetation, is never
regarded as inhabiting the lower world, his death is not celebrated
in any ritual, his worship is joyous and triumphant, and finally
the Amyclean Apollo is specifically the god of war and song.
Moreover, Pausanias describes the monument at Amyclae as
consisting of a rude figure of Apollo standing on an altar-shaped
base which formed the tomb of Hyacinthus. Into the latter
offerings were put for the hero before gifts were made to the god.

On the whole it is probable that Hyacinthus belongs originally
to the pre-Dorian period, and that his story was appropriated
and woven into their own Apollo myth by the conquering
Dorians. Possibly he may be the apotheosis of a pre-Dorian
king of Amyclae. J. G. Frazer further suggests that he may
have been regarded as spending the winter months in the underworld
and returning to earth in the spring when the “hyacinth”
blooms. In this case his festival represents perhaps both the
Dorian conquest of Amyclae and the death of spring before the
ardent heat of the summer sun, typified as usual by the discus
(quoit) with which Apollo is said to have slain him. With the
growth of the hyacinth from his blood should be compared the
oriental stories of violets springing from the blood of Attis, and
roses and anemones from that of Adonis. As a youthful vegetation
god, Hyacinthus may be compared with Linus and Scephrus,
both of whom are connected with Apollo Agyieus.


See L. R. Farnell, Cults of the Greek States, vol. iv. (1907), pp. 125
foll., 264 foll.; J. G. Frazer, Adonis, Attis, Osiris (1906), bk. ii.
ch. 7; S. Wide, Lakonische Kulte, p. 290; E. Rhode, Psyche,
3rd ed. i. 137 foll.; Roscher, Lexikon d. griech. u. röm. Myth., s.v.
“Hyakinthos” (Greve); L. Preller, Griechische Mythol. 4th ed.
i. 248 foll.



(J. M. M.)


 
1 The word is probably derived from an Indo-European root,
meaning “youthful,” found in Latin, Greek, English and Sanskrit.
Some have suggested that the first two letters are from ὕειν, to rain,
(cf. Hyades).





HYADES (“the rainy ones”), in Greek mythology, the
daughters of Atlas and Aethra; their number varies between
two and seven. As a reward for having brought up Zeus at
Dodona and taken care of the infant Dionysus Hyes, whom they
conveyed to Ino (sister of his mother Semele) at Thebes when his
life was threatened by Lycurgus, they were translated to heaven
and placed among the stars (Hyginus, Poët. astron. ii. 21).
Another form of the story combines them with the Pleiades.
According to this they were twelve (or fifteen) sisters, whose
brother Hyas was killed by a snake while hunting in Libya
(Ovid, Fasti, v. 165; Hyginus, Fab. 192). They lamented him
so bitterly that Zeus, out of compassion, changed them into
stars—five into the Hyades, at the head of the constellation
of the Bull, the remainder into the Pleiades. Their name is
derived from the fact that the rainy season commenced when
they rose at the same time as the sun (May 7-21); the original
conception of them is that of the fertilizing principle of moisture.
The Romans derived the name from ὗς (pig), and translated it
by Suculae (Cicero, De nat. deorum, ii. 43).



HYATT, ALPHEUS (1838-1902), American naturalist, was
born at Washington, D.C., on the 5th of April 1838. From
1858 to 1862 he studied at Harvard, where he had Louis Agassiz
for his master, and in 1863 he served as a volunteer in the Civil
War, attaining the rank of captain. In 1867 he was appointed
curator of the Essex Institute at Salem, and in 1870 became
professor of zoology and palaeontology at the Massachusetts
Institute of Technology (resigned 1888), and custodian of the
Boston Society of Natural History (curator in 1881). In 1886
he was appointed assistant for palaeontology in the Cambridge
museum of comparative anatomy, and in 1889 was attached
to the United States Geological Survey as palaeontologist for
the Trias and Jura. He was the chief founder of the American
Society of Naturalists, of which he acted as first president in
1883, and he also took a leading part in establishing the marine
biological laboratories at Annisquam and Woods Hole, Mass.
He died at Cambridge on the 15th of January 1902.


His works include Observations on Fresh-water Polyzoa (1866);
Fossil Cephalopods of the Museum of Comparative Zoology (1872);
Revision of North American Porifera (1875-1877); Genera of Fossil
Cephalopoda (1883); Larval Theory of the Origin of Cellular Tissue
(1884); Genesis of the Arietidae (1889); and Phylogeny of an acquired
characteristic (1894). He wrote the section on Cephalopoda in
Karl von Zittel’s Paläontologie (1900), and his well-known study on
the fossil pond snails of Steinheim (“The Genesis of the Tertiary
Species of Planorbis at Steinheim”) appeared in the Memoirs of the
Boston Natural History Society in 1880. He was one of the founders
and editors of the American Naturalist.





HYBLA, the name of several cities In Sicily. The best known
historically, though its exact site is uncertain, is Hybla Major,
near (or by some supposed to be identical with) Megara Hyblaea
(q.v.): another Hybla, known as Hybla Minor or Galeatis, is
represented by the modern Paternò; while the site of Hybla
Heraea is to be sought near Ragusa.



HYBRIDISM. The Latin word hybrida, hibrida or ibrida
has been assumed to be derived from the Greek ὕβρις, an insult
or outrage, and a hybrid or mongrel has been supposed to be
an outrage on nature, an unnatural product. As a general rule
animals and plants belonging to distinct species do not produce
offspring when crossed with each other, and the term hybrid
has been employed for the result of a fertile cross between
individuals of different species, the word mongrel for the more
common result of the crossing of distinct varieties. A closer
scrutiny of the facts, however, makes the term hybridism less
isolated and more vague. The words species and genus, and
still more subspecies and variety, do not correspond with clearly
marked and sharply defined zoological categories, and no exact
line can be drawn between the various kinds of crossings from
those between individuals apparently identical to those belonging
to genera universally recognized as distinct. Hybridism therefore
grades into mongrelism, mongrelism into cross-breeding, and cross-breeding
into normal pairing, and we can say little more than
that the success of the union is the more unlikely or more unnatural
the further apart the parents are in natural affinity.

The interest in hybridism was for a long time chiefly of a
practical nature, and was due to the fact that hybrids are often
found to present characters somewhat different from those of
either parent. The leading facts have been known in the case
of the horse and ass from time immemorial. The earliest recorded
observation of a hybrid plant is by J. G. Gmelin towards the end
of the 17th century; the next is that of Thomas Fairchild, who
in the second decade of the 18th century, produced the cross
which is still grown in gardens under the name of “Fairchild’s
Sweet William.” Linnaeus made many experiments in the
cross-fertilization of plants and produced several hybrids, but
Joseph Gottlieb Kölreuter (1733-1806) laid the first real foundation
of our scientific knowledge of the subject. Later on Thomas
Andrew Knight, a celebrated English horticulturist, devoted
much successful labour to the improvement of fruit trees and
vegetables by crossing. In the second quarter of the 19th
century C. F. Gärtner made and published the results of a number
of experiments that had not been equalled by any earlier worker.
Next came Charles Darwin, who first in the Origin of Species,
and later in Cross and Self-Fertilization of Plants, subjected the
whole question to a critical examination, reviewed the known
facts and added many to them.


Darwin’s conclusions were summed up by G. J. Romanes in the
9th edition of this Encyclopaedia as follows:—

1. The laws governing the production of hybrids are identical, or
nearly identical, in the animal and vegetable kingdoms.

2. The sterility which so generally attends the crossing of two
specific forms is to be distinguished as of two kinds, which, although

often confounded by naturalists, are in reality quite distinct. For
the sterility may obtain between the two parent species when first
crossed, or it may first assert itself in their hybrid progeny. In the
latter case the hybrids, although possibly produced without any
appearance of infertility on the part of their parent species, nevertheless
prove more or less infertile among themselves, and also with
members of either parent species.

3. The degree of both kinds of infertility varies in the case of
different species, and in that of their hybrid progeny, from absolute
sterility up to complete fertility. Thus, to take the case of plants,
“when pollen from a plant of one family is placed on the stigma of a
plant of a distinct family, it exerts no more influence than so much
inorganic dust. From this absolute zero of fertility, the pollen of
different species, applied to the stigma of some one species of the same
genus, yields a perfect gradation in the number of seeds produced, up
to nearly complete, or even quite complete, fertility; so, in hybrids
themselves, there are some which never have produced, and probably
never would produce, even with the pollen of the pure parents, a
single fertile seed; but in some of these cases a first trace of fertility
may be detected, by the pollen of one of the pure parent species
causing the flower of the hybrid to wither earlier than it otherwise
would have done; and the early withering of the flower is well
known to be a sign of incipient fertilization. From this extreme
degree of sterility we have self-fertilized hybrids producing a greater
and greater number of seeds up to perfect fertility.”

4. Although there is, as a rule, a certain parallelism, there is no
fixed relation between the degree of sterility manifested by the
parent species when crossed and that which is manifested by their
hybrid progeny. There are many cases in which two pure species
can be crossed with unusual facility, while the resulting hybrids are
remarkably sterile; and, contrariwise, there are species which can
only be crossed with extreme difficulty, though the hybrids, when
produced, are very fertile. Even within the limits of the same genus,
these two opposite cases may occur.

5. When two species are reciprocally crossed, i.e. male A with
female B, and male B with female A, the degree of sterility often
differs greatly in the two cases. The sterility of the resulting hybrids
may differ likewise.

6. The degree of sterility of first crosses and of hybrids runs, to a
certain extent, parallel with the systematic affinity of the forms
which are united. “For species belonging to distinct genera can
rarely, and those belonging to distinct families can never, be crossed.
The parallelism, however, is far from complete; for a multitude of
closely allied species will not unite, or unite with extreme difficulty,
whilst other species, widely different from each other, can be crossed
with perfect facility. Nor does the difficulty depend on ordinary
constitutional differences; for annual and perennial plants, deciduous
and evergreen trees, plants flowering at different seasons, inhabiting
different stations, and naturally living under the most
opposite climates, can often be crossed with ease. The difficulty or
facility apparently depends exclusively on the sexual constitution of
the species which are crossed, or on their sexual elective affinity.”



There are many new records as to the production of hybrids.
Horticulturists have been extremely active and successful in
their attempts to produce new flowers or new varieties of vegetables
by seminal or graft-hybrids, and any florist’s catalogue or
the account of any special plant, such as is to be found in Foster-Melliar’s
Book of the Rose, is in great part a history of successful
hybridization. Much special experimental work has been done
by botanists, notably by de Vries, to the results of whose experiments
we shall recur. Experiments show clearly that the
obtaining of hybrids is in many cases merely a matter of taking
sufficient trouble, and the successful crossing of genera is not
infrequent.


Focke, for instance, cites cases where hybrids were obtained
between Brassica and Raphanus, Galium and Asperula, Campanula
and Phyteuma, Verbascum and Celsia. Among animals, new records
and new experiments are almost equally numerous. Boveri has
crossed Echinus microtuberculatus with Sphaerechinus granularis.
Thomas Hunt Morgan even obtained hybrids between Asterias, a
starfish, and Arbacia, a sea-urchin, a cross as remote as would be
that between a fish and a mammal. Vernon got many hybrids by
fertilizing the eggs of Strongylocentrotus lividus with the sperm of
Sphaerechinus granularis. Standfuss has carried on an enormous
series of experiments with Lepidopterous insects, and has obtained a
very large series of hybrids, of which he has kept careful record.
Lepidopterists generally begin to suspect that many curious forms
offered by dealers as new species are products got by crossing known
species. Apellö has succeeded with Teleostean fish; Gebhardt and
others with Amphibia. Elliot and Suchetet have studied carefully
the question of hybridization occurring normally among birds, and
have got together a very large body of evidence. Among the cases
cited by Elliot the most striking are that of the hybrid between
Colaptes cafer and C. auratus, which occurs over a very wide area of
North America and is known as C. hybridus, and the hybrid between
Euplocamus lineatus and E. horsfieldi, which appears to be common in
Assam. St M. Podmore has produced successful crosses between the
wood-pigeon (Columba palumbus) and a domesticated variety of the
rock pigeon (C. livia). Among mammals noteworthy results have
been obtained by Professor Cossar Ewart, who has bred nine zebra
hybrids by crossing mares of various sizes with a zebra stallion, and
who has studied in addition three hybrids out of zebra mares, one
sired by a donkey, the others by ponies. Crosses have been made
between the common rabbit (Lepus cuniculus) and the guinea-pig
(Cavia cobaya), and examples of the results have been exhibited in the
Zoological Gardens of Sydney, New South Wales. The Carnivora
generally are very easy to hybridize, and many successful experiments
have been made with animals in captivity. Karl Hagenbeck of
Hamburg has produced crosses between the lion (Felis leo) and the
tiger (F. tigris). What was probably a “tri-hybrid” in which lion,
leopard and jaguar were mingled was exhibited by a London showman
in 1908. Crosses between various species of the smaller cats
have been fertile on many occasions. The black bear (Ursus americanus)
and the European brown bear (U. arctos) bred in the London
Zoological Gardens in 1859, but the three cubs did not reach maturity.
Hybrids between the brown bear and the grizzly-bear (U. horribilis)
have been produced in Cologne, whilst at Halle since 1874 a series of
successful matings of polar (U. maritimus) and brown bears have
been made. Examples of these hybrid bears have been exhibited
by the London Zoological Society. The London Zoological Society
has also successfully mated several species of antelopes, for instance,
the water-bucks Kobus ellipsiprymnus and K. unctuosus, and Selous’s
antelope Limnotragus selousi with L. gratus.



The causes militating against the production of hybrids
have also received considerable attention. Delage, discussing
the question, states that there is a general proportion between
sexual attraction and zoological affinity, and in many cases
hybrids are not naturally produced simply from absence of the
stimulus to sexual mating, or because of preferential mating
within the species or variety. In addition to differences of
habit, temperament, time of maturity, and so forth, gross
structural differences may make mating impossible. Thus
Escherick contends that among insects the peculiar structure
of the genital appendages makes cross-impregnation impossible,
and there is reason to believe that the specific peculiarities
of the modified sexual palps in male spiders have a similar
result.


The difficulties, however, may not exist, or may be overcome by
experiment, and frequently it is only careful management that is
required to produce crossing. Thus it has been found that when
the pollen of one species does not succeed in fertilizing the ovules
of another species, yet the reciprocal cross may be successful; that
is to say, the pollen of the second species may fertilize the ovules
of the first. H. M. Vernon, working with sea-urchins, found that the
obtaining of hybrids depended on the relative maturity of the
sexual products. The difficulties in crossing apparently may extend
to the chemiotaxic processes of the actual sexual cells. Thus
when the spermatozoa of an urchin were placed in a drop of seawater
containing ripe eggs of an urchin and of a starfish, the former
eggs became surrounded by clusters of the male cells, while the latter
appeared to exert little attraction for the alien germ-cells. Finally,
when the actual impregnation of the egg is possible naturally, or has
been secured by artificial means, the development of the hybrid may
stop at an early stage. Thus hybrids between the urchin and the
starfish, animals belonging to different classes, reached only the
stage of the pluteus larva. A. D. Apellö, experimenting with
Teleostean fish, found that very often impregnation and segmentation
occurred, but that the development broke down immediately
afterwards. W. Gebhardt, crossing Rana esculenta with R. arvalis,
found that the cleavage of the ovum was normal, but that abnormality
began with the gastrula, and that development soon
stopped. In a very general fashion there appears to be a parallel
between the zoological affinity and the extent to which the incomplete
development of the hybrid proceeds.



As to the sterility of hybrids inter se, or with either of the
parent forms, information is still wanted. Delage, summing up
the evidence in a general way, states that mongrels are more
fertile and stronger than their parents, while hybrids are at
least equally hardy but less fertile. While many of the hybrid
products of horticulturists are certainly infertile, others appear
to be indefinitely fertile.


Focke, it is true, states that the hybrids between Primula auricula
and P. hirsuta are fertile for many generations, but not indefinitely
so; but, while this may be true for the particular case, there seems
no reason to doubt that many plant hybrids are quite fertile. In the
case of animals the evidence is rather against fertility. Standfuss,
who has made experiments lasting over many years, and who has
dealt with many genera of Lepidoptera, obtained no fertile hybrid
females, although he found that hybrid males paired readily and
successfully with pure-bred females of the parent races. Elliot,

dealing with birds, concluded that no hybrids were fertile with one
another beyond the second generation, but thought that they were
fertile with members of the parent races. Wallace, on the other
hand, cites from Quatrefages the case of hybrids between the moths
Bombyx cynthia and B. arrindia, which were stated to be fertile
inter se for eight generations. He also states that hybrids between
the sheep and goat have a limited fertility inter se. Charles Darwin,
however, had evidence that some hybrid pheasants were completely
fertile, and he himself interbred the progeny of crosses between the
common and Chinese geese, whilst there appears to be no doubt as to
the complete fertility of the crosses between many species of ducks,
J. L. Bonhote having interbred in various crosses for several generations
the mallard (Anas boschas), the Indian spot-bill duck (A.
poecilorhyncha), the New Zealand grey duck (A. superciliosa) and the
pin-tail (Dafila acuta). Podmore’s pigeon hybrids were fertile inter
se, a specimen having been exhibited at the London Zoological
Gardens. The hybrids between the brown and polar bears bred at
Halle proved to be fertile, both with one of the parent species and
with one another.

Cornevin and Lesbre state that in 1873 an Arab mule was fertilized
in Africa by a stallion, and gave birth to female offspring which she
suckled. All three were brought to the Jardin d’Acclimatation in
Paris, and there the mule had a second female colt to the same
father, and subsequently two male colts in succession to an ass and
to a stallion. The female progeny were fertilized, but their offspring
were feeble and died at birth. Cossar Ewart gives an account of a
recent Indian case in which a female mule gave birth to a male colt.
He points out, however, that many mistakes have been made about
the breeding of hybrids, and is not altogether inclined to accept this
supposed case. Very little has been published with regard to the
most important question, as to the actual condition of the sexual
organs and cells in hybrids. There does not appear to be gross
anatomical defect to account for the infertility of hybrids, but
microscopical examination in a large number of cases is wanted.
Cossar Ewart, to whom indeed much of the most interesting recent
work on hybrids is due, states that in male zebra-hybrids the sexual
cells were immature, the tails of the spermatozoa being much shorter
than those of the similar cells in stallions and zebras. He adds,
however, that the male hybrids he examined were young, and might
not have been sexually mature. He examined microscopically the
ovary of a female zebra-hybrid and found one large and several small
Graafian follicles, in all respects similar to those in a normal mare or
female zebra. A careful study of the sexual organs in animal and
plant hybrids is very much to be desired, but it may be said that so
far as our present knowledge goes there is not to be expected any
obvious microscopical cause of the relative infertility of hybrids.



The relative variability of hybrids has received considerable
attention from many writers. Horticulturists, as Bateson has
written, are “aware of the great and striking variations which
occur in so many orders of plants when hybridization is effected.”
The phrase has been used “breaking the constitution of a
plant” to indicate the effect produced in the offspring of a
hybrid union, and the device is frequently used by those who are
seeking for novelties to introduce on the market. It may be
said generally that hybrids are variable, and that the products
of hybrids are still more variable. J. L. Bonhote found extreme
variations amongst his hybrid ducks. Y. Delage states that
in reciprocal crosses there is always a marked tendency for the
offspring to resemble the male parents; he quotes from Huxley
that the mule, whose male parent is an ass, is more like the ass,
and that the hinny, whose male parent is a horse, is more like
the horse. Standfuss found among Lepidoptera that males
were produced much more often than females, and that these
males paired readily. The freshly hatched larvae closely
resembled the larvae of the female parent, but in the course of
growth the resemblance to the male increased, the extent of the
final approximation to the male depending on the relative
phylogenetic age of the two parents, the parent of the older
species being prepotent. In reciprocal pairing, he found that the
male was able to transmit the characters of the parents in a
higher degree. Cossar Ewart, in relation to zebra hybrids, has
discussed the matter of resemblance to parents in very great
detail, and fuller information must be sought in his writings.
He shows that the wild parent is not necessarily prepotent,
although many writers have urged that view. He described
three hybrids bred out of a zebra mare by different horses, and
found in all cases that the resemblance to the male or horse
parent was more profound. Similarly, zebra-donkey hybrids
out of zebra mares bred in France and in Australia were in
characters and disposition far more like the donkey parents.
The results which he obtained in the hybrids which he bred
from a zebra stallion and different mothers were more variable,
but there was rather a balance in favour of zebra disposition
and against zebra shape and marking.


“Of the nine zebra-horse hybrids I have bred,” he says, “only two
in their make and disposition take decidedly after the wild parent.
As explained fully below, all the hybrids differ profoundly in the plan
of their markings from the zebra, while in their ground colour they
take after their respective dams or the ancestors of their dams far
more than after the zebra—the hybrid out of the yellow and white
Iceland pony, e.g. instead of being light in colour, as I anticipated,
is for the most part of a dark dun colour, with but indistinct stripes.
The hoofs, mane and tail of the hybrids are at the most intermediate,
but this is perhaps partly owing to reversion towards the ancestors
of these respective dams. In their disposition and habits they all
undoubtedly agree more with the wild sire.”



Ewart’s experiments and his discussion of them also throw
important light on the general relation of hybrids to their
parents. He found that the coloration and pattern of his
zebra hybrids resembled far more those of the Somali or Grévy’s
zebra than those of their sire—a Burchell’s zebra. In a general
discussion of the stripings of horses, asses and zebras, he came
to the conclusion that the Somali zebra represented the older
type, and that therefore his zebra hybrids furnished important
evidence of the effect of crossing in producing reversion to
ancestral type. The same subject has of course been discussed
at length by Darwin, in relation to the cross-breeding of
varieties of pigeons; but the modern experimentalists who
are following the work of Mendel interpret reversion differently
(see Mendelism).

Graft-Hybridism.—It is well known that, when two varieties or
allied species are grafted together, each retains its distinctive
characters. But to this general, if not universal, rule there are on
record several alleged exceptions, in which either the scion is said
to have partaken of the qualities of the stock, the stock of the
scion, or each to have affected the other. Supposing any of these
influences to have been exerted, the resulting product would
deserve to be called a graft-hybrid. It is clearly a matter of
great interest to ascertain whether such formation of hybrids by
grafting is really possible; for, if even one instance of such
formation could be unequivocally proved, it would show that
sexual and asexual reproduction are essentially identical.

The cases of alleged graft-hybridism are exceedingly few, considering
the enormous number of grafts that are made every year
by horticulturists, and have been so made for centuries. Of these
cases the most celebrated are those of Adam’s laburnum (Cytisus
Adami) and the bizzarria orange. Adam’s laburnum is now
flourishing in numerous places throughout Europe, all the trees
having been raised as cuttings from the original graft, which was
made by inserting a bud of the purple laburnum into a stock of
the yellow. M. Adam, who made the graft, has left on record
that from it there sprang the existing hybrid. There can be no
question as to the truly hybrid character of the latter—all the
peculiarities of both parent species being often blended in the
same raceme, flower or even petal; but until the experiment shall
have been successfully repeated there must always remain a
strong suspicion that, notwithstanding the assertion and doubtless
the belief of M. Adam, the hybrid arose as a cross in the
ordinary way of seminal reproduction. Similarly, the bizzarria
orange, which is unquestionably a hybrid between the bitter
orange and the citron—since it presents the remarkable spectacle
of these two different fruits blended into one—is stated by the
gardener who first succeeded in producing it to have arisen as a
graft-hybrid; but here again a similar doubt, similarly due to the
need of corroboration, attaches to the statement. And the same
remark applies to the still more wonderful case of the so-called
trifacial orange, which blends three distinct kinds of fruit in one,
and which is said to have been produced by artificially splitting
and uniting the seeds taken from the three distinct species, the
fruits of which now occur blended in the triple hybrid.

The other instances of alleged graft-hybridism are too numerous
to be here noticed in detail; they refer to jessamine, ash,
hazel, vine, hyacinth, potato, beet and rose. Of these the cases
of the vine, beet and rose are the strongest as evidence of graft-hybridization,
from the fact that some of them were produced

as the result of careful experiments made by very competent
experimentalists. On the whole, the results of some of these
experiments, although so few in number, must be regarded as
making out a strong case in favour of the possibility of graft-hybridism.
For it must always be remembered that, in experiments
of this kind, negative evidence, however great in amount,
may be logically dissipated by a single positive result.

Theory of Hybridism.—Charles Darwin was interested in
hybridism as an experimental side of biology, but still more
from the bearing of the facts on the theory of the origin of
species. It is obvious that although hybridism is occasionally
possible as an exception to the general infertility of species
inter se, the exception is still more minimized when it is remembered
that the hybrid progeny usually display some degree
of sterility. The main facts of hybridism appear to lend support
to the old doctrine that there are placed between all species
the barriers of mutual sterility. The argument for the fixity
of species appears still stronger when the general infertility of
species crossing is contrasted with the general fertility of the
crossing of natural and artificial varieties. Darwin himself,
and afterwards G. J. Romanes, showed, however, that the
theory of natural selection did not require the possibility of the
commingling of specific types, and that there was no reason to
suppose that the mutation of species should depend upon their
mutual crossing. There existed more than enough evidence,
and this has been added to since, to show that infertility with
other species is no criterion of a species, and that there is no
exact parallel between the degree of affinity between forms and
their readiness to cross. The problem of hybridism is no more
than the explanation of the generally reduced fertility of remoter
crosses as compared with the generally increased fertility of
crosses between organisms slightly different. Darwin considered
and rejected the view that the inter-sterility of species could
have been the result of natural selection.


“At one time it appeared to me probable,” he wrote (Origin of
Species, 6th ed. p. 247), “as it has to others, that the sterility of
first crosses and of hybrids might have been slowly acquired through
the natural selection of slightly lessened degrees of fertility, which,
like any other variation, spontaneously appeared in certain individuals
of one variety when crossed with those of another variety.
For it would clearly be advantageous to two varieties or incipient
species if they could be kept from blending, on the same principle
that, when man is selecting at the same time two varieties, it is
necessary that he should keep them separate. In the first place, it
may be remarked that species inhabiting distinct regions are often
sterile when crossed; now it could clearly have been of no advantage
to such separated species to have been rendered mutually sterile and,
consequently, this could not have been effected through natural
selection; but it may perhaps be argued that, if a species were
rendered sterile with some one compatriot, sterility with other
species would follow as a necessary contingency. In the second
place, it is almost as much opposed to the theory of natural selection
as to that of special creation, that in reciprocal crosses the male
element of one form should have been rendered utterly impotent on a
second form, whilst at the same time the male element of this second
form is enabled freely to fertilize the first form; for this peculiar
state of the reproductive system could hardly have been advantageous
to either species.”



Darwin came to the conclusion that the sterility of crossed
species must be due to some principle quite independent of
natural selection. In his search for such a principle he brought
together much evidence as to the instability of the reproductive
system, pointing out in particular how frequently wild animals
in captivity fail to breed, whereas some domesticated races have
been so modified by confinement as to be fertile together although
they are descended from species probably mutually infertile.
He was disposed to regard the phenomena of differential sterility
as, so to speak, by-products of the process of evolution. G. J.
Romanes afterwards developed his theory of physiological
selection, in which he supposed that the appearance of differential
fertility within a species was the starting-point of new species;
certain individuals by becoming fertile only inter se proceeded
along lines of modification diverging from the lines followed by
other members of the species. Physiological selection in fact
would operate in the same fashion as geographical isolation;
if a portion of a species separated on an island tends to become
a new species, so also a portion separated by infertility with the
others would tend to form a new species. According to Romanes,
therefore, mutual infertility was the starting-point, not the
result, of specific modification. Romanes, however, did not
associate his interesting theory with a sufficient number of facts,
and it has left little mark on the history of the subject. A. R.
Wallace, on the other hand, has argued that sterility between
incipient species may have been increased by natural selection in
the same fashion as other favourable variations are supposed to
have been accumulated. He thought that “some slight degree
of infertility was a not infrequent accompaniment of the external
differences which always arise in a state of nature between
varieties and incipient species.”

Weismann concluded, from an examination of a series of plant
hybrids, that from the same cross hybrids of different character
may be obtained, but that the characters are determined at
the moment of fertilization; for he found that all the flowers
on the same hybrid plant resembled one another in the minutest
details of colour and pattern. Darwin already had pointed to the
act of fertilization as the determining point, and it is in this
direction that the theory of hybridism has made the greatest
advance.

The starting-point of the modern views comes from the
experiments and conclusions on plant hybrids made by Gregor
Mendel and published in 1865. It is uncertain if Darwin had
paid attention to this work; Romanes, writing in the 9th edition
of this Encyclopaedia, cited it without comment. First H. de
Vries, then W. Bateson and a series of observers returned to the
work of Mendel (see Mendelism), and made it the foundation
of much experimental work and still more theory. It is still too
soon to decide if the confident predictions of the Mendelians
are justified, but it seems clear that a combination of Mendel’s
numerical results with Weismann’s (see Heredity) conception
of the particulate character of the germ-plasm, or hereditary
material, is at the root of the phenomena of hybridism, and
that Darwin was justified in supposing it to lie outside the
sphere of natural selection and to be a fundamental fact of
living matter.
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HYDANTOIN (glycolyl urea),
C3H4N2O2 or

the ureïde of glycollic acid, may be obtained by heating allantoin
or alloxan with hydriodic acid, or by heating bromacetyl urea
with alcoholic ammonia. It crystallizes in needles, melting
at 216° C.

When hydrolysed with baryta water yields hydantoic

(glycoluric)acid, H2N·CO·NH·CH2·CO2H, which is readily soluble
in hot water, and on heating with hydriodic acid decomposes
into ammonia, carbon dioxide and glycocoll, CH2·NH2·CO2·H.
Many substituted hydantoins are known; the α-alkyl hydantoins
are formed on fusion of aldehyde- or ketone-cyanhydrins
with urea, the β-alkyl hydantoins from the fusion of mono-alkyl
glycocolls with urea, and the γ-alkyl hydantoins from the action
of alkalis and alkyl iodides on the α-compounds. γ-Methyl
hydantoin has been obtained as a splitting product of caffeine
(E. Fischer, Ann., 1882, 215, p. 253).



HYDE, the name of an English family distinguished in the
17th century. Robert Hyde of Norbury, Cheshire, had several
sons, of whom the third was Lawrence Hyde of Gussage St
Michael, Dorsetshire. Lawrence’s son Henry was father of
Edward Hyde, earl of Clarendon (q.v.), whose second son by his
second wife was Lawrence, earl of Rochester (q.v.); another son
was Sir Lawrence Hyde, attorney-general to Anne of Denmark,
James I.’s consort; and a third son was Sir Nicholas Hyde
(d. 1631), chief-justice of England. Sir Nicholas entered parliament
in 1601 and soon became prominent as an opponent of the
court, though he does not appear to have distinguished himself
in the law. Before long, however, he deserted the popular
party, and in 1626 he was employed by the duke of Buckingham
in his defence to impeachment by the Commons; and in the
following year he was appointed chief-justice of the king’s bench,
in which office it fell to him to give judgment in the celebrated
case of Sir Thomas Darnell and others who had been committed
to prison on warrants signed by members of the privy council,
which contained no statement of the nature of the charge against
the prisoners. In answer to the writ of habeas corpus the attorney-general
relied on the prerogative of the crown, supported by
a precedent of Queen Elizabeth’s reign. Hyde, three other
judges concurring, decided in favour of the crown, but without
going so far as to declare the right of the crown to refuse indefinitely
to show cause against the discharge of the prisoners.
In 1629 Hyde was one of the judges who condemned Eliot,
Holles and Valentine for conspiracy in parliament to resist the
king’s orders; refusing to admit their plea that they could not
be called upon to answer out of parliament for acts done in
parliament. Sir Nicholas Hyde died in August 1631.

Sir Lawrence Hyde, attorney-general to Anne of Denmark,
had eleven sons, four of whom were men of some mark. Henry
was an ardent royalist who accompanied Charles II. to the
continent, and returning to England was beheaded in 1650;
Alexander (1598-1667) became bishop of Salisbury in 1665;
Edward (1607-1659) was a royalist divine who was nominated
dean of Windsor in 1658, but died before taking up the appointment,
and who was the author of many controversial works in
Anglican theology; and Robert (1595-1665) became recorder of
Salisbury and represented that borough in the Long Parliament,
in which he professed royalist principles, voting against the
attainder of Strafford. Having been imprisoned and deprived
of his recordership by the parliament in 1645/6, Robert Hyde
gave refuge to Charles II. on his flight from Worcester in 1651,
and on the Restoration he was knighted and made a judge of
the common pleas. He died in 1665. Henry Hyde (1672-1753),
only son of Lawrence, earl of Rochester, became 4th earl of
Clarendon and 2nd earl of Rochester, both of which titles became
extinct at his death. He was in no way distinguished, but his
wife Jane Hyde, countess of Clarendon and Rochester (d. 1725),
was a famous beauty celebrated by the homage of Swift, Prior and
Pope, and by the groundless scandal of Lady Mary Wortley
Montagu. Two of her daughters, Jane, countess of Essex, and
Catherine, duchess of Queensberry, were also famous beauties
of the reign of Queen Anne. Her son, Henry Hyde (1710-1753),
known as Viscount Cornbury, was a Tory and Jacobite member
of parliament, and an intimate friend of Bolingbroke, who
addressed to him his Letters on the Study and Use of History, and
On the Spirit of Patriotism. In 1750 Lord Cornbury was created
Baron Hyde of Hindon, but, as he predeceased his father, this
title reverted to the latter and became extinct at his death.
Lord Cornbury was celebrated as a wit and a conversationalist.
By his will he bequeathed the papers of his great-grandfather,
Lord Clarendon, the historian, to the Bodleian Library at Oxford.


See Lord Clarendon, The Life of Edward, Earl of Clarendon (3 vols.,
Oxford, 1827); Edward Foss, The Judges of England (London,
1848-1864); Anthony à Wood, Athenae oxonienses (London, 1813-1820);
Samuel Pepys, Diary and Correspondence, edited by Lord
Braybrooke (4 vols., London, 1854).





HYDE, THOMAS (1636-1703), English Orientalist, was born
at Billingsley, near Bridgnorth, in Shropshire, on the 29th of
June 1636. He inherited his taste for linguistic studies, and
received his first lessons in some of the Eastern tongues, from
his father, who was rector of the parish. In his sixteenth year
Hyde entered King’s College, Cambridge, where, under Wheelock,
professor of Arabic, he made rapid progress in Oriental languages,
so that, after only one year of residence, he was invited to London
to assist Brian Walton in his edition of the Polyglott Bible.
Besides correcting the Arabic, Persic and Syriac texts for that
work, Hyde transcribed into Persic characters the Persian
translation of the Pentateuch, which had been printed in Hebrew
letters at Constantinople in 1546. To this work, which Archbishop
Ussher had thought well-nigh impossible even for a
native of Persia, Hyde appended the Latin version which accompanies
it in the Polyglott. In 1658 he was chosen Hebrew reader
at Queen’s College, Oxford, and in 1659, in consideration of his
erudition in Oriental tongues, he was admitted to the degree of
M.A. In the same year he was appointed under-keeper of the
Bodleian Library, and in 1665 librarian-in-chief. Next year he
was collated to a prebend at Salisbury, and in 1673 to the archdeaconry
of Gloucester, receiving the degree of D.D. shortly
afterwards. In 1691 the death of Edward Pococke opened up to
Hyde the Laudian professorship of Arabic; and in 1697, on the
deprivation of Roger Altham, he succeeded to the regius chair
of Hebrew and a canonry of Christ Church. Under Charles II.,
James II. and William III. Hyde discharged the duties of
Eastern interpreter to the court. Worn out by his unremitting
labours, he resigned his librarianship in 1701, and died at Oxford
on the 18th of February 1703. Hyde, who was one of the first
to direct attention to the vast treasures of Oriental antiquity,
was an excellent classical scholar, and there was hardly an Eastern
tongue accessible to foreigners with which he was not familiar.
He had even acquired Chinese, while his writings are the best
testimony to his mastery of Turkish, Arabic, Syriac, Persian,
Hebrew and Malay.

In his chief work, Historia religionis veterum Persarum (1700),
he made the first attempt to correct from Oriental sources the
errors of the Greek and Roman historians who had described the
religion of the ancient Persians. His other writings and translations
comprise Tabulae longitudinum et latitudinum stellarum
fixarum ex observatione principis Ulugh Beighi (1665), to which
his notes have given additional value; Quatuor evangelia et acta
apostolorum lingua Malaica, caracteribus Europaeis (1677);
Epistola de mensuris et ponderibus serum sive sinensium (1688),
appended to Bernard’s De mensuris et ponderibus antiquis;
Abraham Peritsol itinera mundi (1691); and De ludis orientalibus
libri II. (1694).


With the exception of the Historia religionis, which was republished
by Hunt and Costard in 1760, the writings of Hyde, including
some unpublished MSS., were collected and printed by Dr Gregory
Sharpe in 1767 under the title Syntagma dissertationum quas olim ...
Thomas Hyde separatim edidit. There is a life of the author prefixed.
Hyde also published a catalogue of the Bodleian Library
in 1674.





HYDE, a market town and municipal borough in the Hyde
parliamentary division of Cheshire, England, 71⁄2 m. E. of Manchester,
by the Great Central railway. Pop. (1901) 32,766.
It lies in the densely populated district in the north-east of the
county, on the river Tame, which here forms the boundary of
Cheshire with Lancashire. To the east the outlying hills of the
Peak district of Derbyshire rise abruptly. The town has cotton
weaving factories, spinning mills, print-works, iron foundries
and machine works; also manufactures of hats and margarine.
There are extensive coal mines in the vicinity. Hyde is wholly
of modern growth, though it contains a few ancient houses, such

as Newton Hall, in the part of the town so called. The old family
of Hyde held possession of the manor as early as the reign of
John. The borough, incorporated in 1881, is under a mayor,
6 aldermen and 18 councillors. Area, 3081 acres.



HYDE DE NEUVILLE, JEAN GUILLAUME, Baron (1776-1857),
French politician, was born at La Charité-sur-Loire
(Nièvre) on the 24th of January 1776, the son of Guillaume
Hyde, who belonged to an English family which had emigrated
with the Stuarts after the rebellion of 1745. He was only seventeen
when he successfully defended a man denounced by Fouché
before the revolutionary tribunal of Nevers. From 1793 onwards
he was an active agent of the exiled princes; he took part in the
Royalist rising in Berry in 1796, and after the coup d’état of the
18th Brumaire (November 9, 1799) tried to persuade Bonaparte
to recall the Bourbons. An accusation of complicity in the
infernal machine conspiracy of 1800-1801 was speedily retracted,
but Hyde de Neuville retired to the United States, only to return
after the Restoration. He was sent by Louis XVIII. to London
to endeavour to persuade the British government to transfer
Napoleon to a remoter and safer place of exile than the isle of
Elba, but the negotiations were cut short by the emperor’s
return to France in March 1815. In January 1816 de Neuville
became French ambassador at Washington, where he negotiated
a commercial treaty. On his return in 1821 he declined the
Constantinople embassy, and in November 1822 was elected
deputy for Cosne. Shortly afterwards he was appointed French
ambassador at Lisbon, where his efforts to oust British influence
culminated, in connexion with the coup d’état of Dom Miguel
(April 30, 1824), in his suggestion to the Portuguese minister
to invite the armed intervention of Great Britain. It was assumed
that this would be refused, in view of the loudly proclaimed
British principle of non-intervention, and that France would then
be in a position to undertake a duty that Great Britain had
declined. The scheme broke down, however, owing to the attitude
of the reactionary party in the government of Paris, which
disapproved of the Portuguese constitution. This destroyed
his influence at Lisbon, and he returned to Paris to take his
seat in the Chamber of Deputies. In spite of his pronounced
Royalism, he now showed Liberal tendencies, opposed the
policy of Villèle’s cabinet, and in 1828 became a member of the
moderate administration of Martignac as minister of marine.
In this capacity he showed active sympathy with the cause of
Greek independence. During the Polignac ministry (1829-1830)
he was again in opposition, being a firm upholder of the
charter; but after the revolution of July 1830 he entered an
all but solitary protest against the exclusion of the legitimate
line of the Bourbons from the throne, and resigned his seat.
He died in Paris on the 28th of May 1857.


His Mémoires et souvenirs (3 vols., 1888), compiled from his notes
by his nieces, the vicomtesse de Bardonnet and the baronne Laurenceau,
are of great interest for the Revolution and the Restoration.





HYDE PARK, a small township of Norfolk county, Massachusetts,
U.S.A., about 8 m. S.W. of the business centre of
Boston. Pop. (1890) 10,193; (1900) 13,244, of whom 3805
were foreign-born; (1910 census) 15,507. Its area is about
41⁄2 sq. m. It is traversed by the New York, New Haven &
Hartford railway, which has large repair shops here, and by
the Neponset river and smaller streams. The township contains
the villages of Hyde Park, Readville (in which there is the famous
“Weil” trotting-track), Fairmount, Hazelwood and Clarendon
Hills. Until about 1856 Hyde Park was a farmstead. The value
of the total factory product increased from $4,383,959 in 1900
to $6,739,307 in 1905, or 53.7%. In 1868 Hyde Park was
incorporated as a township, being formed of territory taken
from Dorchester, Dedham and Milton.



HYDERABAD, or Haidarabad, a city and district of British
India, in the Sind province of Bombay. The city stands on a
hill about 3 m. from the left bank of the Indus, and had a population
in 1901 of 69,378. Upon the site of the present fort is
supposed to have stood the ancient town of Nerankot, which
in the 8th century submitted to Mahommed bin Kasim. In
1768 the present city was founded by Ghulam Shah Kalhora;
and it remained the capital of Sind until 1843, when, after the
battle of Meeanee, it was surrendered to the British, and the
capital transferred to Karachi. The city is built on the most
northerly hills of the Ganga range, a site of great natural strength.
In the fort, which covers an area of 36 acres, is the arsenal of
the province, transferred thither from Karachi in 1861, and the
palaces of the ex-mirs of Sind. An excellent water supply is
derived from the Indus. In addition to manufactures of silk,
gold and silver embroidery, lacquered ware and pottery, there
are three factories for ginning cotton. There are three high
schools, training colleges for masters and mistresses, a medical
school, an agricultural school for village officials, and a technical
school. The city suffered from plague in 1896-1897.

The District of Hyderabad has an area of 8291 sq. m.,
with a population in 1901 of 989,030, showing an increase of
15% in the decade. It consists of a vast alluvial plain, on the
left bank of the Indus, 216 m. long and 48 broad. Fertile along
the course of the river, it degenerates towards the east into
sandy wastes, sparsely populated, and defying cultivation. The
monotony is relieved by the fringe of forest which marks the
course of the river, and by the avenues of trees that line the
irrigation channels branching eastward from this stream. The
south of the district has a special feature in its large natural
water-courses (called dhoras) and basin-like shallows (chhaus),
which retain the rains for a long time. A limestone range
called the Ganga and the pleasant frequency of garden lands
break the monotonous landscape. The principal crops are
millets, rice, oil-seeds, cotton and wheat, which are dependent
on irrigation, mostly from government canals. There is a special
manufacture at Hala of glazed pottery and striped cotton cloth.
Three railways traverse the district: (1) one of the main lines
of the North-Western system, following the Indus valley and
crossing the river near Hyderabad; (2) a broad-gauge branch
running south to Badin, which will ultimately be extended
to Bombay; and (3) a metre-gauge line from Hyderabad city
into Rajputana.



HYDERABAD, Haidarabad, also known as the Nizam’s
Dominions, the principal native state of India in extent, population
and political importance; area, 82,698 sq. m.; pop.
(1901) 11,141,142, showing a decrease of 3.4% in the decade;
estimated revenue 41⁄2 crores of Hyderabad rupees (£2,500,000).
The state occupies a large portion of the eastern plateau of the
Deccan. It is bounded on the north and north-east by Berar,
on the south and south-east by Madras, and on the west by
Bombay. The country presents much variety of surface and
feature; but it may be broadly divided into two tracts, distinguished
from one another geologically and ethnically, which
are locally known from the languages spoken as Telingana and
Marathwara. In some parts it is mountainous, wooded and
picturesque, in others flat and undulating. The open country
includes lands of all descriptions, including many rich and fertile
plains, much good land not yet brought under cultivation, and
numerous tracts too sterile ever to be cultivated. In the north-west
the geological formations are volcanic, consisting principally
of trap, but in some parts of basalt; in the middle, southern
and south-western parts the country is overlaid with gneissic
formations. The territory is well watered, rivers being numerous,
and tanks or artificial pieces of water abundant, especially in
Telingana. The principal rivers are the Godavari, with its
tributaries the Dudna, Manjira and Pranhita; the Wardha,
with its tributary the Penganga; and the Kistna, with its
tributary the Tungabhadra. The climate may be considered
in general good; and as there are no arid bare deserts, hot
winds are little felt.

More than half the revenue of the state is derived from the
land, and the development of the country by irrigation and
railways has caused considerable expansion in this revenue,
though the rate of increase in the decade 1891-1901 was retarded
by a succession of unfavourable seasons. The soil is generally
fertile, though in some parts it consists of chilka, a red and gritty
mould little fitted for purposes of agriculture. The principal
crops are millets of various kinds, rice, wheat, oil-seeds, cotton,

tobacco, sugar-cane, and fruits and garden produce in great
variety. Silk, known as tussur, the produce of a wild species
of worm, is utilized on a large scale. Lac, suitable for use as a
resin or dye, gums and oils are found in great quantities. Hides,
raw and tanned, are articles of some importance in commerce.
The principal exports are cotton, oil-seeds, country-clothes
and hides; the imports are salt, grain, timber, European piece-goods
and hardware. The mineral wealth of the state consists
of coal, copper, iron, diamonds and gold; but the development
of these resources has not hitherto been very successful. The
only coal mine now worked is the large one at Singareni, with an
annual out-turn of nearly half a million tons. This coal has
enabled the nizam’s guaranteed state railway to be worked so
cheaply that it now returns a handsome profit to the state. It
also gives encouragement to much-needed schemes of railway
extension, and to the erection of cotton presses and of spinning
and weaving mills. The Hyderabad-Godavari railway (opened
in 1901) traverses a rich cotton country, and cotton presses
have been erected along the line. The currency of the state
is based on the hali sikka, which contains approximately the
same weight of silver as the British rupee, but its exchange
value fell heavily after 1893, when free coinage ceased in the
mint. In 1904, however, a new coin (the Mahbubia rupee)
was minted; the supply was regulated, and the rate of exchange
became about 115 = 100 British rupees. The state suffered from
famine during 1900, the total number of persons in receipt of
relief rising to nearly 500,000 in June of that year. The nizam
met the demands for relief with great liberality.

The nizam of Hyderabad is the principal Mahommedan ruler
in India. The family was founded by Asaf Jah, a distinguished
Turkoman soldier of the emperor Aurangzeb, who in 1713 was
appointed subahdar of the Deccan, with the title of nizam-ul-mulk
(regulator of the state), but eventually threw off the
control of the Delhi court. Azaf Jah’s death in 1748 was followed
by an internecine struggle for the throne among his descendants,
in which the British and the French took part. At one time
the French nominee, Salabat Jang, established himself with
the help of Bussy. But finally, in 1761, when the British had
secured their predominance throughout southern India, Nizam
Ali took his place and ruled till 1803. It was he who confirmed
the grant of the Northern Circars in 1766, and joined in the two
wars against Tippoo Sultan in 1792 and 1799. The additions
of territory which he acquired by these wars was afterwards
(1800) ceded to the British, as payment for the subsidiary force
which he had undertaken to maintain. By a later treaty in
1853, the districts known as Berar were “assigned” to defray
the cost of the Hyderabad contingent. In 1857 when the
Mutiny broke out, the attitude of Hyderabad as the premier
native state and the cynosure of the Mahommedans in India
became a matter of extreme importance; but Afzul-ud-Dowla,
the father of the present ruler, and his famous minister, Sir
Salar Jang, remained loyal to the British. An attack on the
residency was repulsed, and the Hyderabad contingent displayed
their loyalty in the field against the rebels. In 1902 by a treaty
made by Lord Curzon, Berar was leased in perpetuity to the
British government, and the Hyderabad contingent was merged
in the Indian army. The nizam Mir Mahbub Ali Khan Bahadur,
Asaf Jah, a direct descendant of the famous nizam-ul-mulk,
was born on the 18th of August 1866. On the death of his
father in 1869 he succeeded to the throne as a minor, and was
invested with full powers in 1884. He is notable as the originator
of the Imperial Service Troops, which now form the contribution
of the native chiefs to the defence of India. On the occasion
of the Panjdeh incident in 1885 he made an offer of money and
men, and subsequently on the occasion of Queen Victoria’s
Jubilee in 1887 he offered 20 lakhs (£130,000) annually for three
years for the purpose of frontier defence. It was finally decided
that the native chiefs should maintain small but well-equipped
bodies of infantry and cavalry for imperial defence. For many
years past the Hyderabad finances were in a very unhealthy
condition, the expenditure consistently outran the revenue,
and the nobles, who held their tenure under an obsolete feudal
system, vied with each other in ostentatious extravagance.
But in 1902, on the revision of the Berar agreement, the nizam
received 25 lakhs (£167,000) a year for the rent of Berar, thus
substituting a fixed for a fluctuating source of income, and
a British financial adviser was appointed for the purpose of
reorganizing the resources of the state.


See S. H. Bilgrami and C. Willmott, Historical and Descriptive
Sketch of the Nizam’s Dominions (Bombay, 1883-1884).





HYDERABAD or Haidarabad, capital of the above state,
is situated on the right bank of the river Musi, a tributary of
the Kistna, with Golconda to the west, and the residency and
its bazaars and the British cantonment of Secunderabad to the
north-east. It is the fourth largest city in India; pop. (1901)
448,466, including suburbs and cantonment. The city itself is
in shape a parallelogram, with an area of more than 2 sq. m.
It was founded in 1589 by Mahommed Kuli, fifth of the Kutb
Shahi kings, of whose period several important buildings remain
as monuments. The principal of these is the Char Minar or
Four Minarets (1591). The minarets rise from arches facing the
cardinal points, and stand in the centre of the city, with four
roads radiating from their base. The Ashur Khana (1594), a
ceremonial building, the hospital, the Gosha Mahal palace and
the Mecca mosque, a sombre building designed after a mosque
at Mecca, surrounding a paved quadrangle 360 ft. square, were
the other principal buildings of the Kutb Shahi period, though
the mosque was only completed in the time of Aurangzeb. The
city proper is surrounded by a stone wall with thirteen gates,
completed in the time of the first nizam, who made Hyderabad
his capital. The suburbs, of which the most important is
Chadarghat, extend over an additional area of 9 sq. m. There
are several fine palaces built by various nizams, and the British
residency is an imposing building in a large park on the left
bank of the Musi, N.E. of the city. The bazaars surrounding it,
and under its jurisdiction, are extremely picturesque and are
thronged with natives from all parts of India. Four bridges
crossed the Musi, the most notable of which was the Purana
Pul, of 23 arches, built in 1593. On the 27th and 28th of
September 1908, however, the Musi, swollen by torrential rainfall
(during which 15 in. fell in 36 hours), rose in flood to a height of
12 ft. above the bridges and swept them away. The damage
done was widespread; several important buildings were involved,
including the palace of Salar Jang and the Victoria zenana
hospital, while the beautiful grounds of the residency were
destroyed. A large and densely populated part of the city was
wrecked, and thousands of lives were lost. The principal
educational establishments are the Nizam college (first grade),
engineering, law, medical, normal, industrial and Sanskrit
schools, and a number of schools for Europeans and Eurasians.
Hyderabad is an important centre of general trade, and there is a
cotton mill in its vicinity. The city is supplied with water from
two notable works, the Husain Sagar and the Mir Alam, both
large lakes retained by great dams. Secunderabad, the British
military cantonment, is situated 51⁄2 m. N. of the residency;
it includes Bolaram, the former headquarters of the Hyderabad
contingent.



HYDER ALI, or Haidar ’Ali (c. 1722-1782), Indian ruler
and commander. This Mahommedan soldier-adventurer, who,
followed by his son Tippoo, became the most formidable Asiatic
rival the British ever encountered in India, was the great-grandson
of a fakir or wandering ascetic of Islam, who had found his way
from the Punjab to Gulburga in the Deccan, and the second son
of a naik or chief constable at Budikota, near Kolar in Mysore.
He was born in 1722, or according to other authorities 1717.
An elder brother, who like himself was early turned out into
the world to seek his own fortune, rose to command a brigade
in the Mysore army, while Hyder, who never learned to read or
write, passed the first years of his life aimlessly in sport and
sensuality, sometimes, however, acting as the agent of his brother,
and meanwhile acquiring a useful familiarity with the tactics
of the French when at the height of their reputation under
Dupleix. He is said to have induced his brother to employ a
Parsee to purchase artillery and small arms from the Bombay

government, and to enrol some thirty sailors of different European
nations as gunners, and is thus credited with having been “the
first Indian who formed a corps of sepoys armed with firelocks
and bayonets, and who had a train of artillery served by
Europeans.” At the siege of Devanhalli (1749) Hyder’s services
attracted the attention of Nanjiraj, the minister of the raja of
Mysore, and he at once received an independent command;
within the next twelve years his energy and ability had made
him completely master of minister and raja alike, and in everything
but in name he was ruler of the kingdom. In 1763 the
conquest of Kanara gave him possession of the treasures of
Bednor, which he resolved to make the most splendid capital
in India, under his own name, thenceforth changed from Hyder
Naik into Hyder Ali Khan Bahadur; and in 1765 he retrieved
previous defeat at the hands of the Mahrattas by the destruction
of the Nairs or military caste of the Malabar coast, and the
conquest of Calicut. Hyder Ali now began to occupy the
serious attention of the Madras government, which in 1766
entered into an agreement with the nizam to furnish him with
troops to be used against the common foe. But hardly had this
alliance been formed when a secret arrangement was come to
between the two Indian powers, the result of which was that
Colonel Smith’s small force was met with a united army of
80,000 men and 100 guns. British dash and sepoy fidelity,
however, prevailed, first in the battle of Chengam (September 3rd,
1767), and again still more remarkably in that of Tiruvannamalai
(Trinomalai). On the loss of his recently made fleet and forts
on the western coast, Hyder Ali now offered overtures for peace;
on the rejection of these, bringing all his resources and strategy
into play, he forced Colonel Smith to raise the siege of Bangalore,
and brought his army within 5 m. of Madras. The result was
the treaty of April 1769, providing for the mutual restitution
of all conquests, and for mutual aid and alliance in defensive
war; it was followed by a commercial treaty in 1770 with the
authorities of Bombay. Under these arrangements Hyder Ali,
when defeated by the Mahrattas in 1772, claimed British assistance,
but in vain; this breach of faith stung him to fury, and
thenceforward he and his son did not cease to thirst for vengeance.
His time came when in 1778 the British, on the declaration of
war with France, resolved to drive the French out of India.
The capture of Mahé on the coast of Malabar in 1779, followed
by the annexation of lands belonging to a dependent of his own,
gave him the needed pretext. Again master of all that the
Mahrattas had taken from him, and with empire extended to the
Kistna, he descended through the passes of the Ghats amid
burning villages, reaching Conjeeveram, only 45 m. from Madras,
unopposed. Not till the smoke was seen from St Thomas’s
Mount, where Sir Hector Munro commanded some 5200 troops,
was any movement made; then, however, the British general
sought to effect a junction with a smaller body under Colonel
Baillie recalled from Guntur. The incapacity of these officers,
notwithstanding the splendid courage of their men, resulted
in the total destruction of Baillie’s force of 2800 (September
the 10th, 1780). Warren Hastings sent from Bengal Sir Eyre
Coote, who, though repulsed at Chidambaram, defeated Hyder
thrice successively in the battles of Porto Novo, Pollilur and
Sholingarh, while Tippoo was forced to raise the siege of Wandiwash,
and Vellore was provisioned. On the arrival of Lord
Macartney as governor of Madras, the British fleet captured
Negapatam, and forced Hyder Ali to confess that he could never
ruin a power which had command of the sea. He had sent his
son Tippoo to the west coast, to seek the assistance of the French
fleet, when his death took place suddenly at Chittur in December
1782.


See L. B. Bowring, Haidar Ali and Tipu Sultan, “Rulers of India”
series (1893). For the personal character and administration of
Hyder Ali see the History of Hyder Naik, written by Mir Hussein Ali
Khan Kirmani (translated from the Persian by Colonel Miles, and
published by the Oriental Translation Fund), and the curious work
written by M. Le Maître de La Tour, commandant of his artillery
(Histoire d’Hayder-Ali Khan, Paris, 1783). For the whole life and
times see Wilks, Historical Sketches of the South of India (1810-1817);
Aitchison’s Treaties, vol. v. (2nd ed., 1876); and Pearson, Memoirs
of Schwartz (1834).





HYDRA (or Sidra, Nidra, Idero, &c.; anc. Hydrea), an
island of Greece, lying about 4 m. off the S.E. coast of Argolis
in the Peloponnesus, and forming along with the neighbouring
island of Dokos (Dhoko) the Bay of Hydra. Pop. about 6200.
The greatest length from south-west to north-east is about 11 m.,
and the area is about 21 sq. mi.; but it is little better than a
rocky and treeless ridge with hardly a patch or two of arable
soil. Hence the epigram of Antonios Kriezes to the queen of
Greece: “The island produces prickly pears in abundance,
splendid sea captains and excellent prime ministers.” The
highest point, Mount Ere, so called (according to Miaoules)
from the Albanian word for wind, is 1958 ft. high. The next in
importance is known as the Prophet Elias, from the large convent
of that name on its summit. It was there that the patriot
Theodorus Kolokotrones was imprisoned, and a large pine tree
is still called after him. The fact that in former times the island
was richly clad with woods is indicated by the name still employed
by the Turks, Tchamliza, the place of pines; but it is only in
some favoured spots that a few trees are now to be found.
Tradition also has it that it was once a well-watered island
(hence the designation Hydrea), but the inhabitants are now
wholly dependent on the rain supply, and they have sometimes
had to bring water from the mainland. This lack of fountains
is probably to be ascribed in part to the effect of earthquakes,
which are not infrequent; that of 1769 continued for six whole
days. Hydra, the chief town, is built near the middle of the
northern coast, on a very irregular site, consisting of three hills
and the intervening ravines. From the sea its white and handsome
houses present a picturesque appearance, and its streets
though narrow are clean and attractive. Besides the principal
harbour, round which the town is built, there are three other
ports on the north coast—Mandraki, Molo, Panagia, but none
of them is sufficiently sheltered. Almost all the population
of the island is collected in the chief town, which is the seat of a
bishop, and has a local court, numerous churches and a high
school. Cotton and silk weaving, tanning and shipbuilding
are carried on, and there is a fairly active trade.

Hydra was of no importance in ancient times. The only fact
in its history is that the people of Hermione (a city on the
neighbouring mainland now known by the common name of
Kastri) surrendered it to Samian refugees, and that from these
the people of Troezen received it in trust. It appears to be completely
ignored by the Byzantine chroniclers. In 1580 it was
chosen as a refuge by a body of Albanians from Kokkinyas in
Troezenia; and other emigrants followed in 1590, 1628, 1635,
1640, &c. At the close of the 17th century the Hydriotes took
part in the reviving commerce of the Peloponnesus; and in
course of time they extended their range. About 1716 they
began to build sakturia (of from 10 to 15 tons burden), and to
visit the islands of the Aegean; not long after they introduced
the latinadika (40-50 tons), and sailed as far as Alexandria,
Constantinople, Trieste and Venice; and by and by they
ventured to France and even America. From the grain trade
of south Russia more especially they derived great wealth. In
1813 there were about 22,000 people in the island, and of these
10,000 were seafarers. At the time of the outbreak of the war of
Greek independence the total population was 28,190, of whom
16,460 were natives and the rest foreigners. One of their chief
families, the Konduriotti, was worth £2,000,000. Into the
struggle the Hydriotes flung themselves with rare enthusiasm
and devotion, and the final deliverance of Greece was mainly
due to the service rendered by their fleets.


See Pouqueville, Voy. de la Grèce, vol. vi.; Antonios Miaoules,
Ὑπόμνημα περὶ τῆς νήσου Ὕδρας (Munich, 1834); Id. Συνοπτικὴ ἱστορία
τῶν ναυμαχιῶν διὰ τῶν πλοίων τῶν τρίων νήσων, Ὕδρας, Πέτσων καὶ Ψαρῶν
(Nauplia, 1833); Id. Ἱστορία τῆς νήσου Ὕδρας (Athens, 1874); G. D.
Kriezes, Ἱστρία τῆς νήσου Ὕδρας (Patras, 1860).





HYDRA (watersnake), in Greek legend, the offspring of Typhon
and Echidna, a gigantic monster with nine heads (the number
is variously given), the centre one being immortal. Its haunt
was a hill beneath a plane tree near the river Amymone, in the
marshes of Lerna by Argos. The destruction of this Lernaean

hydra was one of the twelve “labours” of Heracles, which he
accomplished with the assistance of Iolaus. Finding that as
soon as one head was cut off two grew up in its place, they burnt
out the roots with firebrands, and at last severed the immortal
head from the body, and buried it under a mighty block of rock.
The arrows dipped by Heracles in the poisonous blood or gall
of the monster ever afterwards inflicted fatal wounds. The
generally accepted interpretation of the legend is that “the
hydra denotes the damp, swampy ground of Lerna with its
numerous springs (κεφαλαί, heads); its poison the miasmic
vapours rising from the stagnant water; its death at the hands
of Heracles the introduction of the culture and consequent
purification of the soil” (Preller). A euhemeristic explanation
is given by Palaephatus (39). An ancient king named Lernus
occupied a small citadel named Hydra, which was defended
by 50 bowmen. Heracles besieged the citadel and hurled
firebrands at the garrison. As often as one of the defenders
fell, two others at once stepped into his place. The citadel
was finally taken with the assistance of the army of Iolaus and
the garrison slain.


See Hesiod, Theog., 313; Euripides, Hercules furens, 419;
Pausanias ii. 37; Apollodorus ii. 5, 2; Diod. Sic. iv. 11; Roscher’s
Lexikon der Mythologie. In the article Greek Art, fig. 20 represents
the slaying of the Lernaean hydra by Heracles.





HYDRA, in astronomy, a constellation of the southern
hemisphere, mentioned by Eudoxus (4th century B.C.) and
Aratus (3rd century B.C.), and catalogued by Ptolemy (27 stars),
Tycho Brahe (19) and Hevelius (31). Interesting objects are:
the nebula H. IV. 27 Hydrae, a planetary nebula, gaseous and
whose light is about equal to an 8th magnitude star; ε Hydrae,
a beautiful triple star, composed of two yellow stars of the 4th
and 6th magnitudes, and a blue star of the 7th magnitude;
R. Hydrae, a long period (425 days) variable, the range in
magnitude being from 4 to 9.7; and U. Hydrae, an irregularly
variable, the range in magnitude being 4.5 to 6.



HYDRACRYLIC ACID (ethylene lactic acid), CH2OH·CH2·CO2H.
an organic oxyacid prepared by acting with silver oxide and
water on β-iodopropionic acid, or from ethylene by the addition
of hypochlorous acid, the addition product being then treated
with potassium cyanide and hydrolysed by an acid. It may
also be prepared by oxidizing the trimethylene glycol obtained
by the action of hydrobromic acid on allylbromide. It is a
syrupy liquid, which on distillation is resolved into water and
the unsaturated acrylic acid, CH2:CH·CO2H. Chromic and
nitric acids oxidize it to oxalic acid and carbon dioxide.
Hydracrylic aldehyde, CH2OH·CH2·CHO, was obtained in 1904
by J. U. Nef (Ann. 335, p. 219) as a colourless oil by heating
acrolein with water. Dilute alkalis convert it into crotonaldehyde,
CH3·CH:CH·CHO.



HYDRANGEA, a popular flower, the plant to which the name
is most commonly applied being Hydrangea Hortensia, a low
deciduous shrub, producing rather large oval strongly-veined
leaves in opposite pairs along the stem. It is terminated by
a massive globular corymbose head of flowers, which remain a
long period in an ornamental condition. The normal colour
of the flowers, the majority of which have neither stamens nor
pistil, is pink; but by the influence of sundry agents in the soil,
such as alum or iron, they become changed to blue. There are
numerous varieties, one of the most noteworthy being “Thomas
Hogg” with pure white flowers. The part of the inflorescence
which appears to be the flower is an exaggerated expansion of
the sepals, the other parts being generally abortive. The perfect
flowers are small, rarely produced in the species above referred
to, but well illustrated by others, in which they occupy the inner
parts of the corymb, the larger showy neuter flowers being
produced at the circumference.

There are upwards of thirty species, found chiefly in Japan,
in the mountains of India, and in North America, and many of
them are familiar in gardens. H. Hortensia (a species long
known in cultivation In China and Japan) is the most useful
for decoration, as the head of flowers lasts long in a fresh state,
and by the aid of forcing can be had for a considerable period
for the ornamentation of the greenhouse and conservatory.
Their natural flowering season is towards the end of the summer,
but they may be had earlier by means of forcing. H. japonica
is another fine conservatory plant, with foliage and habit much
resembling the last named, but this has flat corymbs of flowers,
the central ones small and perfect, and the outer ones only
enlarged and neuter. This also produces pink or blue flowers
under the influence of different soils.

The Japanese species of hydrangea are sufficiently hardy
to grow in any tolerably favourable situation, but except in
the most sheltered localities they seldom blossom to any degree
of perfection in the open air, the head of blossom depending
on the uninjured development of a well-ripened terminal bud,
and this growth being frequently affected by late spring frosts.
They are much more useful for pot-culture indoors, and should
be reared from cuttings of shoots having the terminal bud plump
and prominent, put in during summer, these developing a single
head of flowers the succeeding summer. Somewhat larger
plants may be had by nipping out the terminal bud and inducing
three or four shoots to start in its place, and these, being steadily
developed and well ripened, should each yield its inflorescence
in the following summer, that is, when two years old. Large
plants grown in tubs and vases are fine subjects for large conservatories,
and useful for decorating terrace walks and similar
places during summer, being housed in winter, and started
under glass in spring.

Hydrangea paniculata var. grandiflora is a very handsome
plant; the branched inflorescence under favourable circumstances
is a yard or more in length, and consists of large spreading
masses of crowded white neuter flowers which completely conceal
the few inconspicuous fertile ones. The plant attains a height
of 8 to 10 ft. and when in flower late in summer and in autumn
is a very attractive object in the shrubbery.

The Indian and American species, especially the latter, are
quite hardy, and some of them are extremely effective.



HYDRASTINE, C21H21NO6, an alkaloid found with berberine
in the root of golden seal, Hydrastis canadensis, a plant indigenous
to North America. It was discovered by Durand in 1851, and
its chemistry formed the subject of numerous communications
by E. Schmidt and M. Freund (see Ann., 1892, 271, p. 311)
who, aided by P. Fritsch (Ann., 1895, 286, p. 1), established
its constitution. It is related to narcotine, which is methoxy
hydrastine. The root of golden seal is used in medicine under
the name hydrastis rhizome, as a stomachic and nervine
stimulant.



HYDRATE, in chemistry, a compound containing the elements
of water in combination; more specifically, a compound containing
the monovalent hydroxyl or OH group. The first and more
general definition includes substances containing water of
crystallization; such salts are said to be hydrated, and when
deprived of their water to be dehydrated or anhydrous. Compounds
embraced by the second definition are more usually
termed hydroxides, since at one time they were regarded as combinations
of an oxide with water, for example, calcium oxide or
lime when slaked with water yielded calcium hydroxide, written
formerly as CaO·H20. The general formulae of hydroxides
are: MiOH, Mii(OH)2, Miii(OH)3, Miv(OH)4, &c., corresponding
to the oxides M2iO, MiiO, M2iiiO3, MivO2, &c., the Roman index
denoting the valency of the element. There is an important
difference between non-metallic and metallic hydroxides;
the former are invariably acids (oxyacids), the latter are more
usually basic, although acidic metallic oxides yield acidic
hydroxides. Elements exhibiting strong basigenic or oxygenic
characters yield the most, stable hydroxides; in other words,
stable hydroxides are associated with elements belonging to the
extreme groups of the periodic system, and unstable hydroxides
with the central members. The most stable basic hydroxides
are those of the alkali metals, viz. lithium, sodium, potassium,
rubidium and caesium, and of the alkaline earth metals, viz.
calcium, barium and strontium; the most stable acidic hydroxides
are those of the elements placed in groups VB, VIB and VIIB
of the periodic table.





HYDRAULICS (Gr. ὕδωρ, water, and αὐλός, a pipe), the branch
of engineering science which deals with the practical applications
of the laws of hydromechanics.

I. THE DATA OF HYDRAULICS1

§ 1. Properties of Fluids.—The fluids to which the laws of
practical hydraulics relate are substances the parts of which
possess very great mobility, or which offer a very small resistance
to distortion independently of inertia. Under the general
heading Hydromechanics a fluid is defined to be a substance
which yields continually to the slightest tangential stress, and
hence in a fluid at rest there can be no tangential stress. But,
further, in fluids such as water, air, steam, &c., to which the
present division of the article relates, the tangential stresses
that are called into action between contiguous portions during
distortion or change of figure are always small compared with
the weight, inertia, pressure, &c., which produce the visible
motions it is the object of hydraulics to estimate. On the other
hand, while a fluid passes easily from one form to another, it
opposes considerable resistance to change of volume.

It is easily deduced from the absence or smallness of the
tangential stress that contiguous portions of fluid act on each
other with a pressure which is exactly or very nearly normal
to the interface which separates them. The stress must be a
pressure, not a tension, or the parts would separate. Further,
at any point in a fluid the pressure in all directions must be the
same; or, in other words, the pressure on any small element
of surface is independent of the orientation of the surface.

§ 2. Fluids are divided into liquids, or incompressible fluids,
and gases, or compressible fluids. Very great changes of pressure
change the volume of liquids only by a small amount, and if
the pressure on them is reduced to zero they do not sensibly
dilate. In gases or compressible fluids the volume alters sensibly
for small changes of pressure, and if the pressure is indefinitely
diminished they dilate without limit.

In ordinary hydraulics, liquids are treated as absolutely
incompressible. In dealing with gases the changes of volume
which accompany changes of pressure must be taken into
account.

§ 3. Viscous fluids are those in which change of form under a
continued stress proceeds gradually and increases indefinitely.
A very viscous fluid opposes great resistance to change of form
in a short time, and yet may be deformed considerably by a
small stress acting for a long period. A block of pitch is more
easily splintered than indented by a hammer, but under the
action of the mere weight of its parts acting for a long enough
time it flattens out and flows like a liquid.


	

	Fig. 1.


All actual fluids are viscous. They oppose a resistance
to the relative motion of their parts. This resistance diminishes
with the velocity of the relative motion, and becomes zero
in a fluid the parts of which are relatively at rest. When the
relative motion of different parts of a fluid is small, the viscosity
may be neglected without introducing important errors. On
the other hand, where there is considerable relative motion,
the viscosity may be expected
to have an influence
too great to be neglected.


Measurement of Viscosity.
Coefficient of Viscosity.—Suppose
the plane ab, fig. 1
of area ω, to move with the
velocity V relatively to the
surface cd and parallel to it.
Let the space between be filled with liquid. The layers of liquid
in contact with ab and cd adhere to them. The intermediate layers
all offering an equal resistance to shearing or distortion, the rectangle
of fluid abcd will take the form of the parallelogram a′b′cd.
Further, the resistance to the motion of ab may be expressed in
the form

R = κωV,

(1)

where κ is a coefficient the nature of which remains to be determined.

If we suppose the liquid between ab and cd divided into layers as
shown in fig. 2, it will be clear that the stress R acts, at each dividing
face, forwards in the direction of motion if we consider the upper
layer, backwards if we consider the lower layer. Now suppose the
original thickness of the layer T increased to nT; if the bounding
plane in its new position has the velocity nV, the shearing at each
dividing face will be exactly the same as before, and the resistance
must therefore be the same. Hence,

R = κ′ω (nV).

(2)

But equations (1) and (2) may both be expressed in one equation if
κ and κ′ are replaced by a constant varying inversely as the thickness
of the layer. Putting κ = μ/T, κ′ = μ/nT,

R = μωV/T;

or, for an indefinitely thin layer,

R = μωdV/dt,

(3)

an expression first proposed by L. M. H. Navier. The coefficient μ is
termed the coefficient of viscosity.

According to J. Clerk Maxwell, the value of μ for air at θ° Fahr. in
pounds, when the velocities are expressed in feet per second, is

μ = 0.000 000 025 6 (461° + θ);

that is, the coefficient of viscosity is proportional to the absolute
temperature and independent of the pressure.

The value of μ for water at 77° Fahr. is, according to H. von
Helmholtz and G. Piotrowski,

μ = 0.000 018 8,

the units being the same as before. For water μ decreases rapidly
with increase of temperature.




	

	Fig. 2.


§ 4. When a fluid flows in a very regular manner, as for instance
when It flows in a capillary tube, the velocities vary gradually
at any moment from
one point of the fluid
to a neighbouring
point. The layer adjacent
to the sides of
the tube adheres to it
and is at rest. The
layers more interior
than this slide on each
other. But the resistance
developed by
these regular movements
is very small. If
in large pipes and open
channels there were a
similar regularity of movement, the neighbouring filaments
would acquire, especially near the sides, very great relative
velocities. V. J. Boussinesq has shown that the central filament
in a semicircular canal of 1 metre radius, and inclined at a slope
of only 0.0001, would have a velocity of 187 metres per second,2
the layer next the boundary remaining at rest. But before
such a difference of velocity can arise, the motion of the fluid
becomes much more complicated. Volumes of fluid are detached
continually from the boundaries, and, revolving, form eddies
traversing the fluid in all directions, and sliding with finite
relative velocities against those surrounding them. These
slidings develop resistances incomparably greater than the
viscous resistance due to movements varying continuously from
point to point. The movements which produce the phenomena
commonly ascribed to fluid friction must be regarded as rapidly
or even suddenly varying from one point to another. The
internal resistances to the motion of the fluid do not depend
merely on the general velocities of translation at different points
of the fluid (or what Boussinesq terms the mean local velocities),
but rather on the intensity at each point of the eddying agitation.
The problems of hydraulics are therefore much more complicated
than problems in which a regular motion of the fluid is assumed,
hindered by the viscosity of the fluid.


Relation of Pressure, Density, and Temperature
of Liquids

§ 5. Units of Volume.—In practical calculations the cubic foot
and gallon are largely used, and in metric countries the litre and
cubic metre (= 1000 litres). The imperial gallon is now exclusively
used in England, but the United States have retained the old English
wine gallon.




	1 cub. ft. 	= 6.236 imp. gallons 	= 7.481 U.S. gallons.

	1 imp. gallon 	= 0.1605 cub. ft. 	= 1.200 U.S. gallons.

	1 U.S. gallon 	= 0.1337 cub. ft. 	= 0.8333 imp. gallon.

	1 litre 	= 0.2201 imp. gallon 	= 0.2641 U.S. gallon.



Density of Water.—Water at 53° F. and ordinary pressure contains
62.4 ℔ per cub. ft., or 10 ℔ per imperial gallon at 62° F. The litre
contains one kilogram of water at 4° C. or 1000 kilograms per cubic
metre. River and spring water is not sensibly denser than pure
water. But average sea water weighs 64 ℔ per cub. ft. at 53° F.
The weight of water per cubic unit will be denoted by G. Ice free
from air weighs 57.28 ℔ per cub. ft. (Leduc).

§ 6. Compressibility of Liquids.—The most accurate experiments
show that liquids are sensibly compressed by very great pressures,
and that up to a pressure of 65 atmospheres, or about 1000 ℔ per
sq. in., the compression is proportional to the pressure. The chief
results of experiment are given in the following table. Let V1 be
the volume of a liquid in cubic feet under a pressure p1 ℔ per sq. ft.,
and V2 its volume under a pressure p2. Then the cubical compression
is (V2 − V1)/V1, and the ratio of the increase of pressure
p2 − p1 to the cubical compression is sensibly constant. That is,
k = (p2 − p1)V1/(V2 − V1) is constant. This constant is termed the
elasticity of volume. With the notation of the differential calculus,


	k = dp / ( − 	dV
	) = − V 	dp
	.

	V 	dV


Elasticity of Volume of Liquids.


	  	Canton. 	Oersted. 	Colladon

and Sturm. 	Regnault.

	Water 	45,990,000 	45,900,000 	42,660,000 	44,000,000

	Sea water 	52,900,000 	·· 	·· 	··

	Mercury 	705,300,000 	·· 	626,100,000 	604,500,000

	Oil 	44,090,000 	·· 	·· 	··

	Alcohol 	32,060,000 	·· 	23,100,000 	··



According to the experiments of Grassi, the compressibility of
water diminishes as the temperature increases, while that of ether,
alcohol and chloroform is increased.

§ 7. Change of Volume and Density of Water with Change of Temperature.—Although
the change of volume of water with change of
temperature is so small that it may generally be neglected in ordinary
hydraulic calculations, yet it should be noted that there is a change
of volume which should be allowed for in very exact calculations.
The values of ρ in the following short table, which gives data enough
for hydraulic purposes, are taken from Professor Everett’s System
of Units.

Density of Water at Different Temperatures.


	Temperature. 	ρ

Density of

Water. 	G

Weight of

1 cub. ft.

in ℔.

	Cent. 	Fahr.

	0 	32.0 	.999884 	62.417

	1 	33.8 	.999941 	62.420

	2 	35.6 	.999982 	62.423

	3 	37.4 	1.000004 	62.424

	4 	39.2 	1.000013 	62.425

	5 	41.0 	1.000003 	62.424

	6 	42.8 	.999983 	62.423

	7 	44.6 	.999946 	62.421

	8 	46.4 	.999899 	62.418

	9 	48.2 	.999837 	62.414

	10 	50.0 	.999760 	62.409

	11 	51.8 	.999668 	62.403

	12 	53.6 	.999562 	62.397

	13 	55.4 	.999443 	62.389

	14 	57.2 	.999312 	62.381

	15 	59.0 	.999173 	62.373

	16 	60.8 	.999015 	62.363

	17 	62.6 	.998854 	62.353

	18 	64.4 	.998667 	62.341

	19 	66.2 	.998473 	62.329

	20 	68.0 	.998272 	62.316

	22 	71.6 	.997839 	62.289

	24 	75.2 	.997380 	62.261

	26 	78.8 	.996879 	62.229

	28 	82.4 	.996344 	62.196

	30 	86  	.995778 	62.161

	35 	95  	.99469  	62.093

	40 	104  	.99236  	61.947

	45 	113  	.99038  	61.823

	50 	122  	.98821  	61.688

	55 	131  	.98583  	61.540

	60 	140  	.98339  	61.387

	65 	149  	.98075  	61.222

	70 	158  	.97795  	61.048

	75 	167  	.97499  	60.863

	80 	176  	.97195  	60.674

	85 	185  	.96880  	60.477

	90 	194  	.96557  	60.275

	100 	212  	.95866  	59.844



The weight per cubic foot has been calculated from the values of
ρ, on the assumption that 1 cub. ft. of water at 39.2° Fahr. is 62.425 ℔.
For ordinary calculations in hydraulics, the density of water (which
will in future be designated by the symbol G) will be taken at 62.4 ℔
per cub. ft., which is its density at 53° Fahr. It may be noted also
that ice at 32° Fahr. contains 57.3 ℔ per cub. ft. The values of ρ
are the densities in grammes per cubic centimetre.

§ 8. Pressure Column. Free Surface Level.—Suppose a small
vertical pipe introduced into a liquid at any point P (fig. 3). Then
the liquid will rise in the pipe to a level OO, such that the pressure
due to the column in the pipe exactly balances the pressure on its
mouth. If the fluid is in motion the mouth of the pipe must be
supposed accurately parallel to the direction of motion, or the
impact of the liquid at the mouth of the pipe will have an influence
on the height of the column. If this condition is complied with,
the height h of the column is a measure of the pressure at the point
P. Let ω be the area of section of the pipe, h the height of the
pressure column, p the intensity of pressure at P; then

pω = Ghω ℔,

p/G = h;

that is, h is the height due to the pressure at p. The level OO will
be termed the free surface level corresponding to the pressure
at P.

Relation of Pressure, Temperature, and Density of Gases


	

	Fig. 3.


§ 9. Relation of Pressure, Volume, Temperature and Density in
Compressible Fluids.—Certain problems on the flow of air and
steam are so similar to
those relating to the flow
of water that they are
conveniently treated
together. It is necessary,
therefore, to state as
briefly as possible the
properties of compressible
fluids so far as knowledge
of them is requisite
in the solution of these
problems. Air may be
taken as a type of these
fluids, and the numerical
data here given will relate
to air.

Relation of Pressure
and Volume at Constant Temperature.—At constant temperature
the product of the pressure p and volume V of a given quantity of
air is a constant (Boyle’s law).

Let p0 be mean atmospheric pressure (2116.8 ℔ per sq. ft.), V0
the volume of 1 ℔ of air at 32° Fahr. under the pressure p0. Then

p0V0 = 26214.

(1)

If G0 is the weight per cubic foot of air in the same conditions,

G0 = 1/V0 = 2116.8/26214 = .08075.

(2)

For any other pressure p, at which the volume of 1 ℔ is V and the
weight per cubic foot is G, the temperature being 32° Fahr.,

pV = p/G = 26214; or G = p/26214.

(3)

Change of Pressure or Volume by Change of Temperature.—Let p0,
V0, G0, as before be the pressure, the volume of a pound in cubic feet,
and the weight of a cubic foot in pounds, at 32° Fahr. Let p, V, G
be the same quantities at a temperature t (measured strictly by the
air thermometer, the degrees of which differ a little from those of
a mercurial thermometer). Then, by experiment,

pV = p0V0 (460.6 + t) / (460.6 + 32) = p0V0τ/τ0,

(4)

where τ, τ0 are the temperatures t and 32° reckoned from the absolute
zero, which is −460.6° Fahr.;

p/G = p0τ/G0τ0;

(4a)

G = pτ0G0/p0τ.

(5)

If p0 = 2116.8, G0 = .08075, τ0 = 460.6 + 32 = 492.6, then

p/G = 53.2τ.

(5a)

Or quite generally p/G = Rτ for all gases, if R is a constant varying
inversely as the density of the gas at 32° F. For steam R = 85.5.



II. KINEMATICS OF FLUIDS

§ 10. Moving fluids as commonly observed are conveniently
classified thus:

(1) Streams are moving masses of indefinite length, completely
or incompletely bounded laterally by solid boundaries. When
the solid boundaries are complete, the flow is said to take place
in a pipe. When the solid boundary is incomplete and leaves
the upper surface of the fluid free, it is termed a stream bed or
channel or canal.

(2) A stream bounded laterally by differently moving fluid
of the same kind is termed a current.

(3) A jet is a stream bounded by fluid of a different kind.

(4) An eddy, vortex or whirlpool is a mass of fluid the particles
of which are moving circularly or spirally.

(5) In a stream we may often regard the particles as flowing
along definite paths in space. A chain of particles following
each other along such a constant path may be termed a fluid
filament or elementary stream.


§ 11. Steady and Unsteady, Uniform and Varying, Motion.—There
are two quite distinct ways of treating hydrodynamical questions.
We may either fix attention on a given mass of fluid and consider
its changes of position and energy under the action of the stresses
to which it is subjected, or we may have regard to a given fixed
portion of space, and consider the volume and energy of the fluid
entering and leaving that space.




	

	Fig. 4.


If, in following a given path ab (fig. 4), a mass of water a has a
constant velocity, the motion is said to be uniform. The kinetic
energy of the mass a remains unchanged. If the velocity varies
from point to point of the path, the motion is called varying motion.
If at a given point a in space, the particles of water always arrive
with the same velocity and in the same direction, during any given
time, then the motion is termed steady motion. On the contrary,
if at the point a the velocity or direction varies from moment to
moment the motion is termed
unsteady. A river which excavates
its own bed is in
unsteady motion so long as
the slope and form of the bed
is changing. It, however,
tends always towards a condition in which the bed ceases to change,
and it is then said to have reached a condition of permanent regime.
No river probably is in absolutely permanent regime, except perhaps
in rocky channels. In other cases the bed is scoured more or less
during the rise of a flood, and silted again during the subsidence of
the flood. But while many streams of a torrential character change
the condition of their bed often and to a large extent, in others the
changes are comparatively small and not easily observed.

As a stream approaches a condition of steady motion, its regime
becomes permanent. Hence steady motion and permanent regime
are sometimes used as meaning the same thing. The one, however,
is a definite term applicable to the motion of the water, the other a
less definite term applicable in strictness only to the condition of
the stream bed.

§ 12. Theoretical Notions on the Motion of Water.—The actual
motion of the particles of water is in most cases very complex. To
simplify hydrodynamic problems, simpler modes of motion are
assumed, and the results of theory so obtained are compared experimentally
with the actual motions.


	

	Fig. 5.


Motion in Plane Layers.—The simplest kind of motion in a stream
is one in which the particles initially situated in any plane cross
section of the stream continue
to be found in plane
cross sections during the
subsequent motion. Thus,
if the particles in a thin
plane layer ab (fig. 5) are
found again in a thin plane
layer a′b′ after any interval
of time, the motion is said
to be motion in plane layers. In such motion the internal work
in deforming the layer may usually be disregarded, and the resistance
to the motion is confined to the circumference.

Laminar Motion.—In the case of streams having solid boundaries,
it is observed that the central parts move faster than the lateral
parts. To take account of these differences of velocity, the stream
may be conceived to be divided into thin laminae, having cross
sections somewhat similar to the solid boundary of the stream, and
sliding on each other. The different laminae can then be treated
as having differing velocities according to any law either observed
or deduced from their mutual friction. A much closer approximation
to the real motion of ordinary streams is thus obtained.

Stream Line Motion.—In the preceding hypothesis, all the particles
in each lamina have the same velocity at any given cross section of
the stream. If this assumption is abandoned, the cross section of
the stream must be supposed divided into indefinitely small areas,
each representing the section of a fluid filament. Then these filaments
may have any law of variation of velocity assigned to them.
If the motion is steady motion these fluid filaments (or as they are
then termed stream lines) will have fixed positions in space.


	

	Fig. 6.


Periodic Unsteady Motion.—In ordinary streams with rough
boundaries, it is observed that at any given point the velocity varies
from moment to moment in magnitude and direction, but that the
average velocity for a sensible period (say for 5 or 10 minutes)
varies very little either in magnitude or velocity. It has hence
been conceived that the variations of direction and magnitude of
the velocity are periodic, and that, if for each point of the stream the
mean velocity and direction of motion were substituted for the
actual more or less varying motions, the motion of the stream
might be treated as steady stream line or steady laminar
motion.

§ 13. Volume of Flow.—Let A (fig. 6) be any ideal plane surface,
of area ω, in a stream, normal to the direction of motion, and let V
be the velocity of the fluid. Then the volume flowing through the
surface A in unit time is

Q = ωV.

(1)

Thus, if the motion is rectilinear, all the particles at any instant in
the surface A will be found after one second in a similar surface A′,
at a distance V, and as each particle is followed by a continuous
thread of other particles, the volume of flow is the right prism AA′
having a base ω and length V.

If the direction of motion makes an angle θ with the normal to
the surface, the volume of flow is represented by an oblique prism
AA′ (fig. 7), and in that case

Q = ωV cos θ.


	

	Fig. 7.


If the velocity varies at different points of the surface, let the surface
be divided into very small portions, for each of which the
velocity may be regarded as constant. If dω is the area and v, or
v cos θ, the normal velocity for this element of the surface, the
volume of flow is

Q = ∫ v dω, or ∫ v cos θ dω,

as the case may be.

§ 14. Principle of Continuity.—If we consider any completely
bounded fixed space in a moving liquid initially and finally filled
continuously with liquid, the inflow must be equal to the outflow.
Expressing the inflow with a positive and the outflow with a negative
sign, and estimating the volume of flow Q for all the boundaries,

ΣQ = 0.

In general the space will remain filled with fluid if the pressure
at every point remains positive. There will be a break of continuity,
if at any point the pressure becomes negative, indicating that the
stress at that point is tensile. In the case of ordinary water this
statement requires modification. Water contains a variable amount
of air in solution, often about one-twentieth of its volume. This air
is disengaged and breaks the continuity of the liquid, if the pressure
falls below a point corresponding to its tension. It is for this reason
that pumps will not draw water to the full height due to atmospheric
pressure.

Application of the Principle of Continuity to the case of a Stream.—If
A1, A2 are the areas of two normal cross sections of a stream,
and V1, V2 are the velocities of the stream at those sections, then
from the principle of continuity,

V1A1 = V2A2;

V1/V2 = A2/A1

(2)

that is, the normal velocities are inversely as the areas of the cross
sections. This is true of the mean velocities, if at each section the
velocity of the stream varies. In a river of varying slope the velocity
varies with the slope. It is easy therefore to see that in parts of
large cross section the slope is smaller than in parts of small cross
section.

If we conceive a space in a liquid bounded by normal sections at
A1, A2 and between A1, A2 by stream lines (fig. 8), then, as there
is no flow across the stream lines,

V1/V2 = A2/A1,

as in a stream with rigid boundaries.


	

	Fig. 8.


In the case of compressible fluids the variation of volume due to
the difference of pressure at the two sections must be taken into
account. If the motion is steady the weight of fluid between two
cross sections of a stream must remain constant. Hence the weight
flowing in must be the same as the weight flowing out. Let p1, p2
be the pressures, v1, v2 the velocities, G1, G2 the weight per cubic foot
of fluid, at cross sections of a stream of areas A1, A2. The volumes
of inflow and outflow are

A1v1 and A2v2,

and, if the weights of these are the same,

G1A1v1 = G2A2v2;

and hence, from (5a) § 9, if the temperature is constant,

p1A1v1 = p2A2v2.

(3)
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§ 15. Stream Lines.—The characteristic of a perfect fluid, that is,
a fluid free from viscosity, is that the pressure between any two parts
into which it is divided by a plane must be normal to the plane.
One consequence of this is that the particles can have no rotation
impressed upon them, and the motion of such a fluid is irrotational.
A stream line is the line, straight or curved, traced by a particle in
a current of fluid in irrotational movement. In a steady current
each stream line preserves its figure and position unchanged, and
marks the track of a stream of particles forming a fluid filament
or elementary stream. A current in steady irrotational movement
may be conceived to be divided by insensibly thin partitions following
the course of the stream lines into a number of elementary
streams. If the positions of these partitions are so adjusted that
the volumes of flow in all the elementary streams are equal, they
represent to the mind the velocity as well as the direction of motion
of the particles in different parts of the current, for the velocities
are inversely proportional to the cross sections of the elementary
streams. No actual fluid is devoid of viscosity, and the effect of
viscosity is to render the motion of a fluid sinuous, or rotational or
eddying under most ordinary conditions. At very low velocities
in a tube of moderate size the motion of water may be nearly pure
stream line motion. But at some velocity, smaller as the diameter
of the tube is greater, the motion suddenly becomes tumultuous.
The laws of simple stream line motion have hitherto been investigated
theoretically, and from mathematical difficulties have only
been determined for certain simple cases. Professor H. S. Hele
Shaw has found means of exhibiting stream
line motion in a number of very interesting
cases experimentally. Generally in these experiments
a thin sheet of fluid is caused to flow
between two parallel plates of glass. In the
earlier experiments streams of very small air
bubbles introduced into the water current
rendered visible the motions of the water. By
the use of a lantern the image of a portion of
the current can be shown on a screen or photographed.
In later experiments streams of
coloured liquid at regular distances were introduced
into the sheet and these much more
clearly marked out the forms of the stream
lines. With a fluid sheet 0.02 in. thick, the
stream lines were found to be stable at almost
any required velocity. For certain simple
cases Professor Hele Shaw has shown that the
experimental stream lines of a viscous fluid are
so far as can be measured identical with the calculated stream lines of
a perfect fluid. Sir G. G. Stokes pointed out that in this case, either
from the thinness of the stream between its glass walls, or the
slowness of the motion, or the high viscosity of the liquid, or from
a combination of all these, the flow is regular, and the effects of
inertia disappear, the viscosity dominating everything. Glycerine
gives the stream lines very satisfactorily.

Fig. 9 shows the stream lines of a sheet of fluid passing a fairly
shipshape body such as a screwshaft strut. The arrow shows the
direction of motion of the fluid. Fig. 10 shows the stream lines for
a very thin glycerine sheet passing a non-shipshape body, the
stream lines being practically perfect. Fig. 11 shows one of the
earlier air-bubble experiments with a thicker sheet of water. In
this case the stream lines break up behind the obstruction, forming
an eddying wake. Fig. 12 shows the stream lines of a fluid passing
a sudden contraction or sudden enlargement of a pipe. Lastly,
fig. 13 shows the stream lines of a current passing an oblique plane.
H. S. Hele Shaw, “Experiments on the Nature of the Surface Resistance
in Pipes and on Ships,” Trans. Inst. Naval Arch. (1897).
“Investigation of Stream Line Motion under certain Experimental
Conditions,” Trans. Inst. Naval Arch. (1898); “Stream Line Motion
of a Viscous Fluid,” Report of British Association (1898).

III. PHENOMENA OF THE DISCHARGE OF LIQUIDS FROM
ORIFICES AS ASCERTAINABLE BY EXPERIMENTS


	

	Fig. 14.


§ 16. When a liquid issues vertically from a small orifice, it forms
a jet which rises nearly to the level of the free surface of the liquid
in the vessel from which
it flows. The difference
of level hr (fig. 14) is
so small that it may be
at once suspected to be
due either to air resistance
on the surface of the jet
or to the viscosity of the
liquid or to friction against
the sides of the orifice.
Neglecting for the moment
this small quantity, we
may infer, from the elevation
of the jet, that each
molecule on leaving the
orifice possessed the velocity
required to lift it
against gravity to the
height h. From ordinary
dynamics, the relation
between the velocity and
height of projection is
given by the equation

v = √2gh.

(1)

As this velocity is nearly
reached in the flow from
well-formed orifices, it is
sometimes called the theoretical velocity of discharge. This relation
was first obtained by Torricelli.

If the orifice is of a suitable conoidal form, the water issues in
filaments normal to the plane of the orifice. Let ω be the area of
the orifice, then the discharge per second must be, from eq. (1),

Q = ωv = ω√2gh nearly.

(2)

This is sometimes quite improperly called the theoretical discharge
for any kind of orifice. Except for a well-formed conoidal
orifice the result is not approximate even, so that if it is supposed
to be based on a theory the theory is a false one.

Use of the term Head in Hydraulics.—The term head is an old
millwright’s term, and meant primarily the height through which a
mass of water descended in actuating a hydraulic machine. Since
the water in fig. 14 descends through a height h to the orifice, we
may say there are h ft. of head above the orifice. Still more generally
any mass of liquid h ft. above a horizontal plane may be said to have
h ft. of elevation head relatively to that datum plane. Further,
since the pressure p at the orifice which produces outflow is connected
with h by the relation p/G = h, the quantity p/G may be termed
the pressure head at the orifice. Lastly, the velocity v is connected
with h by the relation v2/2g = h, so that v2/2g may be termed the
head due to the velocity v.

§ 17. Coefficients of Velocity and Resistance.—As the actual velocity
of discharge differs from √2gh by a small quantity, let the actual
velocity

= va = cv √2gh,

(3)

where cv is a coefficient to be determined by experiment, called the
coefficient of velocity. This coefficient is found to be tolerably constant
for different heads with well-formed simple orifices, and it very
often has the value 0.97.

The difference between the velocity of discharge and the velocity
due to the head may be reckoned in another way. The total height
h causing outflow consists of two parts—one part he expended
effectively in producing the velocity of outflow, another hr in overcoming
the resistances due to viscosity and friction. Let

hr = crhe,

where cr is a coefficient determined by experiment, and called the
coefficient of resistance of the orifice. It is tolerably constant for
different heads with well-formed orifices. Then

va = √2ghe = √ { 2gh / (1 + cr) }.

(4)



The relation between cv and cr for any orifice is easily found:—

va = cv√2gh = √ { 2gh / (1 + cr) }

   cv = √ { 1 / (1 + cr) }

(5)

   cr = 1 / cv2 − 1.

(5a)

Thus if cv = 0.97, then cr = 0.0628. That is, for such an orifice about
61⁄4% of the head is expended in overcoming frictional resistances
to flow.


	

	Fig. 15.


Coefficient of Contraction—Sharp-edged Orifices in Plane Surfaces.—When
a jet issues from an aperture in a vessel, it may either spring
clear from the inner edge of the orifice as at a or b (fig. 15), or it
may adhere to the sides of the orifice as at c. The former condition
will be found if the orifice is bevelled outwards as at a, so as to be
sharp edged, and it will also occur generally for a prismatic aperture
like b, provided the thickness of the plate in which the aperture is
formed is less than the diameter
of the jet. But if the thickness
is greater the condition shown
at c will occur.

When the discharge occurs
as at a or b, the filaments converging
towards the orifice
continue to converge beyond
it, so that the section of the
jet where the filaments have
become parallel is smaller than
the section of the orifice. The
inertia of the filaments opposes
sudden change of direction
of motion at the edge of the
orifice, and the convergence
continues for a distance of
about half the diameter of the
orifice beyond it. Let ω be the
area of the orifice, and ccω the area of the jet at the point where
convergence ceases; then cc is a coefficient to be determined experimentally
for each kind of orifice, called the coefficient of contraction.
When the orifice is a sharp-edged orifice in a plane surface, the
value of cc is on the average 0.64, or the section of the jet is very
nearly five-eighths of the area of the orifice.


	

	Fig. 16.


Coefficient of Discharge.—In applying the general formula Q = ωv
to a stream, it is assumed that the filaments have a common velocity
v normal to the section ω. But if
the jet contracts, it is at the contracted
section of the jet that
the direction of motion is normal
to a transverse section of the
jet. Hence the actual discharge
when contraction occurs is

Qa = cvv × ccω = cccvω √(2gh),

or simply, if c = cvcc,

Qa = cω √(2gh),

where c is called the coefficient
of discharge. Thus for a sharp-edged
plane orifice c = 0.97 ×
0.64 = 0.62.

§ 18. Experimental Determination
of cv, cc, and c.—The coefficient
of contraction cc is
directly determined by measuring
the dimensions of the jet.
For this purpose fixed screws of fine pitch (fig. 16) are convenient.
These are set to touch the jet, and then the distance between them
can be measured at leisure.

The coefficient of velocity is determined directly by measuring
the parabolic path of a horizontal jet.

Let OX, OY (fig. 17) be horizontal and vertical axes, the origin
being at the orifice. Let h be the head, and x, y the coordinates of
a point A on the parabolic path of the jet. If va is the velocity at
the orifice, and t the time in which a particle moves from O to A,
then

x = vat; y = 1⁄2 gt2.

Eliminating t,

va = √ (gx2/2y).

Then

cv = va √ (2gh) = √ (x2/4yh).

In the case of large orifices such as weirs, the velocity can be
directly determined by using a Pitot tube (§ 144).


	

	Fig. 17.


The coefficient of discharge, which for practical purposes is the
most important of the three coefficients, is best determined by tank
measurement of
the flow from the
given orifice in a
suitable time. If
Q is the discharge
measured in the
tank per second,
then

c = Q/ω √ (2gh).

Measurements of
this kind though
simple in principle
are not free from
some practical
difficulties, and
require much care.
In fig. 18 is shown
an arrangement of
measuring tank.
The orifice is fixed
in the wall of the cistern A and discharges either into the waste
channel BB, or into the measuring tank. There is a short trough
on rollers C which when run under the jet directs the discharge
into the tank, and when run back again allows the discharge to drop
into the waste channel. D is a stilling screen to prevent agitation
of the surface at the measuring point, E, and F is a discharge valve
for emptying the measuring tank. The rise of level in the tank, the
time of the flow and the head over the orifice at that time must be
exactly observed.


	

	Fig. 18.


For well made sharp-edged orifices, small relatively to the water
surface in the supply reservoir, the coefficients under different
conditions of head are pretty exactly known. Suppose the same
quantity of water is made to flow in succession through such an
orifice and through another orifice of which the coefficient is required,
and when the rate of flow is constant the heads over each
orifice are noted. Let h1, h2 be the heads, ω1,
ω2 the areas of the
orifices, c1, c2 the coefficients. Then since the flow through each
orifice is the same

Q = c1ω1 √ (2gh1) = c2ω2 √ (2gh2).

c2 = c1 (ω1/ω2) √ (h1/h2).


	

	Fig. 19.


§ 19. Coefficients for Bellmouths and Bellmouthed Orifices.—If an
orifice is furnished with a mouthpiece exactly of the form of the
contracted vein, then the whole of the contraction occurs within
the mouthpiece, and if the area of the orifice is measured at the
smaller end, cc must be put = 1. It is often desirable to bellmouth
the ends of pipes, to avoid the loss of head which occurs if this is

not done; and such a bellmouth may also have the form of the contracted
jet. Fig. 19 shows the proportions of such a bellmouth
or bell-mouthed orifice, which approximates to the form of the contracted
jet sufficiently for any practical purpose.

For such an orifice L. J. Weisbach found the following values of
the coefficients with different heads.


	Head over orifice, in ft. = h 	.66 	1.64 	11.48 	55.77 	337.93

	Coefficient of velocity = cv 	.959 	.967 	.975 	.994 	.994

	Coefficient of resistance = cr 	.087 	.069 	.052 	.012 	.012



As there is no contraction after the jet issues from the orifice,
cc = 1, c = cv; and therefore

Q = cvω √ (2gh) = ω √ { 2gh / (1 + cr }.

§ 20. Coefficients for Sharp-edged or virtually Sharp-edged Orifices.—There
are a very large number of measurements of discharge from
sharp-edged orifices under different conditions of head. An account
of these and a very careful tabulation of the average values of the
coefficients will be found in the Hydraulics of the late Hamilton
Smith (Wiley & Sons, New York, 1886). The following short table
abstracted from a larger one will give a fair notion of how the coefficient
varies according to the most trustworthy of the experiments.

Coefficient of Discharge for Vertical Circular Orifices, Sharp-edged,
with free Discharge into the Air. Q = cω √ (2gh).


	Head

measured to

Centre of

Orifice. 	Diameters of Orifice.

	.02 	.04 	.10 	.20 	.40 	.60 	1.0

	Values of C.

	0.3 	.. 	.. 	.621 	.. 	.. 	.. 	..

	0.4 	.. 	.637 	.618 	.. 	.. 	.. 	..

	0.6 	.655 	.630 	.613 	.601 	.596 	.588 	..

	0.8 	.648 	.626 	.610 	.601 	.597 	.594 	.583

	1.0 	.644 	.623 	.608 	.600 	.598 	.595 	.591

	2.0 	.632 	.614 	.604 	.599 	.599 	.597 	.595

	4.0 	.623 	.609 	.602 	.599 	.598 	.597 	.596

	8.0 	.614 	.605 	.600 	.598 	.597 	.596 	.596

	20.0 	.601 	.599 	.596 	.596 	.596 	.596 	.594



At the same time it must be observed that differences of sharpness
in the edge of the orifice and some other circumstances affect the
results, so that the values found by different careful experimenters
are not a little discrepant. When exact measurement of flow has
to be made by a sharp-edged orifice it is desirable that the coefficient
for the particular orifice should be directly determined.

The following results were obtained by Dr H. T. Bovey in the
laboratory of McGill University.

Coefficient of Discharge for Sharp-edged Orifices.


	Head in

ft. 	Form of Orifice.

	Circular. 	Square. 	Rectangular Ratio

of Sides 4:1 	Rectangular Ratio

of Sides 16:1 	Tri-

angular.

	Sides

Vertical. 	Diagonal

Vertical. 	Long

Sides

Vertical. 	Long

Sides

hori-

zontal. 	Long

Sides

Vertical. 	Long

Sides

Hori-

zontal.

	1 	.620 	.627 	.628 	.642 	.643 	.663 	.664 	.636

	2 	.613 	.620 	.628 	.634 	.636 	.650 	.651 	.628

	4 	.608 	.616 	.618 	.628 	.629 	.641 	.642 	.623

	6 	.607 	.614 	.616 	.626 	.627 	.637 	.637 	.620

	8 	.606 	.613 	.614 	.623 	.625 	.634 	.635 	.619

	10 	.605 	.612 	.613 	.622 	.624 	.632 	.633 	.618

	12 	.604 	.611 	.612 	.622 	.623 	.631 	.631 	.618

	14 	.604 	.610 	.612 	.621 	.622 	.630 	.630 	.618

	16 	.603 	.610 	.611 	.620 	.622 	.630 	.630 	.617

	18 	.603 	.610 	.611 	.620 	.621 	.630 	.629 	.616

	20 	.603 	.609 	.611 	.620 	.621 	.629 	.628 	.616



The orifice was 0.196 sq. in. area and the reductions were made
with g = 32.176 the value for Montreal. The value of the coefficient
appears to increase as (perimeter) / (area) increases. It decreases
as the head increases. It decreases a little as the size of the orifice
is greater.

Very careful experiments by J. G. Mair (Proc. Inst. Civ. Eng.
lxxxiv.) on the discharge from circular orifices gave the results
shown on top of next column.

The edges of the orifices were got up with scrapers to a sharp
square edge. The coefficients generally fall as the head increases
and as the diameter increases. Professor W. C. Unwin found that
the results agree with the formula

c = 0.6075 + 0.0098 / √ h − 0.0037d,

where h is in feet and d in inches.

Coefficients of Discharge from Circular Orifices.
Temperature 51° to 55°.


	Head in

feet

h. 	Diameters of Orifices in Inches (d).

	1 	11⁄4 	11⁄2 	13⁄4 	2 	21⁄4 	21⁄2 	23⁄4 	3

	  	Coefficients (c).

	 .75 	.616 	.614 	.616 	.610 	.616 	.612 	.607 	.607 	.609

	1.0  	.613 	.612 	.612 	.611 	.612 	.611 	.604 	.608 	.609

	1.25 	.613 	.614 	.610 	.608 	.612 	.608 	.605 	.605 	.606

	1.50 	.610 	.612 	.611 	.606 	.610 	.607 	.603 	.607 	.605

	1.75 	.612 	.611 	.611 	.605 	.611 	.605 	.604 	.607 	.605

	2.00 	.609 	.613 	.609 	.606 	.609 	.606 	.604 	.604 	.605



The following table, compiled by J. T. Fanning (Treatise on Water
Supply Engineering), gives values for rectangular orifices in vertical
plane surfaces, the head being measured, not immediately
over the orifice, where the surface is depressed, but to the still-water
surface at some distance from the orifice. The values were
obtained by graphic interpolation, all the most reliable experiments
being plotted and curves drawn so as to average the
discrepancies.

Coefficients of Discharge for Rectangular Orifices, Sharp-edged,
in Vertical Plane Surfaces.


	Head to

Centre of

Orifice. 	Ratio of Height to Width.

	4 	2 	11⁄2 	1 	3⁄4 	1⁄2 	1⁄4 	1⁄8

	Feet. 	4 ft. high.

1 ft. wide. 	2 ft. high.

1 ft. wide. 	11⁄2 ft. high.

1 ft. wide. 	1 ft. high.

1 ft. wide. 	0.75 ft. high.

1 ft. wide.
	0.50 ft. high.

1 ft. wide. 	0.25 ft. high.

1 ft. wide. 	0.125 ft. high.

1 ft. wide.

	 0.2  	.. 	.. 	.. 	.. 	.. 	.. 	.. 	.6333

	 .3  	.. 	.. 	.. 	.. 	.. 	.. 	.6293 	.6334

	 .4  	.. 	.. 	.. 	.. 	.. 	.6140 	.6306 	.6334

	 .5  	.. 	.. 	.. 	.. 	.6050 	.6150 	.6313 	.6333

	 .6  	.. 	.. 	.. 	.5984 	.6063 	.6156 	.6317 	.6332

	 .7  	.. 	.. 	.. 	.5994 	.6074 	.6162 	.6319 	.6328

	 .8  	.. 	.. 	.6130 	.6000 	.6082 	.6165 	.6322 	.6326

	 .9  	.. 	.. 	.6134 	.6006 	.6086 	.6168 	.6323 	.6324

	 1.0  	.. 	.. 	.6135 	.6010 	.6090 	.6172 	.6320 	.6320

	 1.25 	.. 	.6188 	.6140 	.6018 	.6095 	.6173 	.6317 	.6312

	 1.50 	.. 	.6187 	.6144 	.6026 	.6100 	.6172 	.6313 	.6303

	 1.75 	.. 	.6186 	.6145 	.6033 	.6103 	.6168 	.6307 	.6296

	 2  	.. 	.6183 	.6144 	.6036 	.6104 	.6166 	.6302 	.6291

	 2.25 	.. 	.6180 	.6143 	.6029 	.6103 	.6163 	.6293 	.6286

	 2.50 	.6290 	.6176 	.6139 	.6043 	.6102 	.6157 	.6282 	.6278

	 2.75 	.6280 	.6173 	.6136 	.6046 	.6101 	.6155 	.6274 	.6273

	 3  	.6273 	.6170 	.6132 	.6048 	.6100 	.6153 	.6267 	.6267

	 3.5  	.6250 	.6160 	.6123 	.6050 	.6094 	.6146 	.6254 	.6254

	 4  	.6245 	.6150 	.6110 	.6047 	.6085 	.6136 	.6236 	.6236

	 4.5  	.6226 	.6138 	.6100 	.6044 	.6074 	.6125 	.6222 	.6222

	 5  	.6208 	.6124 	.6088 	.6038 	.6063 	.6114 	.6202 	.6202

	 6  	.6158 	.6094 	.6063 	.6020 	.6044 	.6087 	.6154 	.6154

	 7  	.6124 	.6064 	.6038 	.6011 	.6032 	.6058 	.6110 	.6114

	 8  	.6090 	.6036 	.6022 	.6010 	.6022 	.6033 	.6073 	.6087

	 9  	.6060 	.6020 	.6014 	.6010 	.6015 	.6020 	.6045 	.6070

	10  	.6035 	.6015 	.6010 	.6010 	.6010 	.6010 	.6030 	.6060

	15  	.6040 	.6018 	.6010 	.6011 	.6012 	.6013 	.6033 	.6066

	20  	.6045 	.6024 	.6012 	.6012 	.6014 	.6018 	.6036 	.6074

	25  	.6048 	.6028 	.6014 	.6012 	.6016 	.6022 	.6040 	.6083

	30  	.6054 	.6034 	.6017 	.6013 	.6018 	.6027 	.6044 	.6092

	35  	.6060 	.6039 	.6021 	.6014 	.6022 	.6032 	.6049 	.6103

	40  	.6066 	.6045 	.6025 	.6015 	.6026 	.6037 	.6055 	.6114

	45  	.6054 	.6052 	.6029 	.6016 	.6030 	.6043 	.6062 	.6125

	50  	.6086 	.6060 	.6034 	.6018 	.6035 	.6050 	.6070 	.6140



§ 21. Orifices with Edges of Sensible Thickness.—When the edges of
the orifice are not bevelled outwards, but have a sensible thickness,
the coefficient of discharge is somewhat altered. The following
table gives values of the coefficient of discharge for the arrangements
of the orifice shown in vertical section at P, Q, R (fig. 20). The
plan of all the orifices is shown at S. The planks forming the orifice
and sluice were each 2 in. thick, and the orifices were all 24 in. wide.
The heads were measured immediately over the orifice. In this case,

Q = cb (H  − h) √ { 2g(H + h)/2 }.

§ 22. Partially Suppressed Contraction.—Since the contraction of
the jet is due to the convergence towards the orifice of the issuing
streams, it will be diminished if for any portion of the edge of the
orifice the convergence is prevented. Thus, if an internal rim or
border is applied to part of the edge of the orifice (fig. 21), the convergence
for so much of the edge is suppressed. For such cases
G. Bidone found the following empirical formulae applicable:—



Table of Coefficients of Discharge for Rectangular Vertical Orifices in Fig. 20.


	Head h

above

upper

edge of

Orifice

in feet. 	Height of Orifice, H − h, in feet.

	1.31 	0.66 	0.16 	0.10

	P 	Q 	R 	P 	Q 	R 	P 	Q 	R 	P 	Q 	R

	0.328 	0.598 	0.644 	0.648 	0.634 	0.665 	0.668 	0.691 	0.664 	0.666 	0.710 	0.694 	0.696

	 .656 	0.609 	0.653 	0.657 	0.640 	0.672 	0.675 	0.685 	0.687 	0.688 	0.696 	0.704 	0.706

	 .787 	0.612 	0.655 	0.659 	0.641 	0.674 	0.677 	0.684 	0.690 	0.692 	0.694 	0.706 	0.708

	 .984 	0.616 	0.656 	0.660 	0.641 	0.675 	0.678 	0.683 	0.693 	0.695 	0.692 	0.709 	0.711

	1.968 	0.618 	0.649 	0.653 	0.640 	0.676 	0.679 	0.678 	0.695 	0.697 	0.688 	0.710 	0.712

	3.28  	0.608 	0.632 	0.634 	0.638 	0.674 	0.676 	0.673 	0.694 	0.695 	0.680 	0.704 	0.705

	4.27  	0.602 	0.624 	0.626 	0.637 	0.673 	0.675 	0.672 	0.693 	0.694 	0.678 	0.701 	0.702

	4.92  	0.598 	0.620 	0.622 	0.637 	0.673 	0.674 	0.672 	0.692 	0.693 	0.676 	0.699 	0.699

	5.58  	0.596 	0.618 	0.620 	0.637 	0.672 	0.673 	0.672 	0.692 	0.693 	0.676 	0.698 	0.698

	6.56  	0.595 	0.615 	0.617 	0.636 	0.671 	0.672 	0.671 	0.691 	0.692 	0.675 	0.696 	0.696

	9.84  	0.592 	0.611 	0.612 	0.634 	0.669 	0.670 	0.668 	0.689 	0.690 	0.672 	0.693 	0.693



For rectangular orifices,

Cc = 0.62 (1 + 0.152 n/p);

and for circular orifices,

Cc = 0.62 (1 + 0.128 n/p);

when n is the length of the edge of the orifice over which the border
extends, and p is the whole length of edge or perimeter of the orifice.
The following are the values of cc, when the border extends over
1⁄4, 1⁄2, or 3⁄4 of the whole perimeter:—


	n/p 	Cc

Rectangular Orifices 	Cc

Circular Orifices

	0.25 	0.643 	.640

	0.50 	0.667 	.660

	0.75 	0.691 	.680




	
	

	Fig. 20.
	Fig. 21.


For larger values of n/p the formulae are not applicable. C. R.
Bornemann has shown,
however, that these formulae
for suppressed contraction
are not reliable.

§ 23. Imperfect Contraction.—If
the sides of
the vessel approach near
to the edge of the orifice,
they interfere with the
convergence of the streams
to which the contraction
is due, and the contraction
is then modified. It is
generally stated that the
influence of the sides
begins to be felt if their
distance from the edge of
the orifice is less than 2.7
times the corresponding
width of the orifice. The coefficients of contraction for this case
are imperfectly known.


	

	Fig. 22.


§ 24. Orifices Furnished with Channels of Discharge.—These external
borders to an orifice also modify the contraction.

The following coefficients of discharge were obtained with openings
8 in. wide, and small in proportion to the channel of approach
(fig. 22, A, B, C).


	h2 − h1

in feet 	h1 in feet.

	.0656 	.164 	.328 	.656 	1.640 	3.28 	4.92 	6.56 	9.84

	A 	0.656 	.480 	.511 	.542 	.574 	.599 	.601 	.601 	.601 	.601

	B 	.480 	.510 	.538 	.506 	.592 	.600 	.602 	.602 	.601

	C 	.527 	.553 	.574 	.592 	.607 	.610 	.610 	.609 	.608

	A 	0.164 	.488 	.577 	.624 	.631 	.625 	.624 	.619 	.613 	.606

	B 	.487 	.571 	.606 	.617 	.626 	.628 	.627 	.623 	.618

	C 	.585 	.614 	.633 	.645 	.652 	.651 	.650 	.650 	.649




	

	Fig. 23.


§ 25. Inversion of the Jet.—When a jet issues from a horizontal
orifice, or is of small size compared with the head, it presents no
marked peculiarity of form. But if the orifice is in a vertical surface,
and if its dimensions are not small compared with the head,

it undergoes a series of singular changes of form after leaving the
orifice. These were first investigated by G. Bidone (1781-1839);
subsequently H. G. Magnus (1802-1870) measured jets from different
orifices; and later Lord Rayleigh (Proc. Roy. Soc. xxix. 71) investigated
them anew.

Fig. 23 shows some forms, the upper figure giving the shape of
the orifices, and the others sections of the jet. The jet first contracts
as described above, in consequence of the convergence of the fluid
streams within the vessel, retaining, however, a form similar to that
of the orifice. Afterwards it expands into sheets in planes perpendicular
to the sides of the orifice. Thus the jet from a triangular
orifice expands into three sheets, in planes bisecting at right angles
the three sides of the triangle. Generally a jet from an orifice, in
the form of a regular polygon of n sides, forms n sheets in planes
perpendicular to the sides of the polygon.

Bidone explains this by reference to the simpler case of meeting
streams. If two equal streams having the same axis, but moving
in opposite directions, meet, they spread out into a thin disk normal
to the common axis of the streams. If the directions of two streams
intersect obliquely they spread into a symmetrical sheet perpendicular
to the plane of the streams.


	

	Fig. 24.


Let a1, a2 (fig. 24) be two points in an orifice at depths h1, h2 from
the free surface. The filaments issuing at a1, a2 will have the different
velocities √ 2gh1 and √ 2gh2.
Consequently they will
tend to describe parabolic
paths a1cb1 and a2cb2 of
different horizontal range,
and intersecting in the
point c. But since two
filaments cannot simultaneously
flow through the
same point, they must
exercise mutual pressure,
and will be deflected out of
the paths they tend to
describe. It is this mutual
pressure which causes
the expansion of the jet
into sheets.

Lord Rayleigh pointed out that, when the orifices are small and
the head is not great, the expansion of the sheets in directions perpendicular
to the direction of flow reaches a limit. Sections taken
at greater distance from the orifice show a contraction of the sheets
until a compact form is reached similar to that at the first contraction.
Beyond this point, if the jet retains its coherence, sheets are
thrown out again, but in directions bisecting the angles between the
previous sheets. Lord Rayleigh accepts an explanation of this contraction
first suggested by H. Buff (1805-1878), namely, that it is
due to surface tension.

§ 26. Influence of Temperature on Discharge of Orifices.—Professor
VV. C. Unwin found (Phil. Mag., October 1878, p. 281) that for
sharp-edged orifices temperature has a very small influence on the
discharge. For an orifice 1 cm. in diameter with heads of about
1 to 11⁄2 ft. the coefficients were:—


	Temperature F. 	C.

	205° 	.594

	 62° 	.598



For a conoidal or bell-mouthed orifice 1 cm. diameter the effect of
temperature was greater:—


	Temperature F. 	C.

	190° 	0.987

	130° 	0.974

	 60° 	0.942



an increase in velocity of discharge of 4% when the temperature
increased 130°.

J. G. Mair repeated these experiments on a much larger scale
(Proc. Inst. Civ. Eng. lxxxiv.). For a sharp-edged orifice 21⁄2 in.
diameter, with a head of 1.75 ft., the coefficient was 0.604 at 57°
and 0.607 at 179° F., a very small difference. With a conoidal
orifice the coefficient was 0.961 at 55° and 0.98l at 170° F. The
corresponding coefficients of resistance are 0.0828 and 0.0391,
showing that the resistance decreases to about half at the higher
temperature.

§ 27. Fire Hose Nozzles.—Experiments have been made by J. R.
Freeman on the coefficient of discharge from smooth cone nozzles
used for fire purposes. The coefficient was found to be 0.983 for 3⁄4-in.
nozzle; 0.982 for 7⁄8 in.; 0.972 for 1 in.; 0.976 for 11⁄8 in.; and
0.971 for 11⁄4 in. The nozzles were fixed on a taper play-pipe, and the
coefficient includes the resistance of this pipe (Amer. Soc. Civ. Eng.
xxi., 1889). Other forms of nozzle were tried such as ring nozzles
for which the coefficient was smaller.

IV. THEORY OF THE STEADY MOTION OF FLUIDS.

§ 28. The general equation of the steady motion of a fluid given
under Hydrodynamics furnishes immediately three results as to the
distribution of pressure in a stream which may here be assumed.

(a) If the motion is rectilinear and uniform, the variation of
pressure is the same as in a fluid at rest. In a stream flowing in an
open channel, for instance, when the effect of eddies produced by the
roughness of the sides is neglected, the pressure at each point is
simply the hydrostatic pressure due to the depth below the free
surface.

(b) If the velocity of the fluid is very small, the distribution of
pressure is approximately the same as in a fluid at rest.

(c) If the fluid molecules take precisely the accelerations which
they would have if independent and submitted only to the external
forces, the pressure is uniform. Thus in a jet falling freely in the
air the pressure throughout any cross section is uniform and equal
to the atmospheric pressure.

(d) In any bounded plane section traversed normally by streams
which are rectilinear for a certain distance on either side of the
section, the distribution of pressure is the same as in a fluid at rest.

Distribution of Energy in Incompressible Fluids.

§ 29. Application of the Principle of the Conservation of Energy to
Cases of Stream Line Motion.—The external and internal work
done on a mass is equal to the change of kinetic energy produced.
In many hydraulic questions this principle is difficult to apply, because
from the complicated nature of the motion produced it is
difficult to estimate the total kinetic energy generated, and because
in some cases the internal work done in overcoming frictional or
viscous resistances cannot be ascertained; but in the case of stream
line motion it furnishes a simple and important result known as
Bernoulli’s theorem.


	

	Fig. 25.


Let AB (fig. 25) be any one elementary stream, in a steadily moving
fluid mass. Then, from the steadiness of the motion, AB is a fixed
path in space through which a stream of fluid is constantly flowing.
Let OO be the free surface and XX any horizontal datum line. Let
ω be the area of a normal cross section, v the velocity, p the intensity
of pressure, and z the elevation above XX, of the elementary stream
AB at A, and ω1, p1, v1, z1 the same quantities at B. Suppose that
in a short time t the mass of fluid initially occupying AB comes to
A′B′. Then AA′, BB′ are equal to vt, v1t, and the volumes of fluid
AA′, BB′ are the equal inflow and outflow = Qt = ωvt =
ω1v1t, in the
given time. If we suppose the filament AB surrounded by other
filaments moving with not very different velocities, the frictional
or viscous resistance on its surface will be small enough to
be neglected, and if the fluid is incompressible no internal work is
done in change of volume. Then the work done by external forces
will be equal to the kinetic energy produced in the time considered.


The normal pressures on the surface of the mass (excluding the
ends A, B) are at each point normal to the direction of motion, and
do no work. Hence the only external forces to be reckoned are
gravity and the pressures on the ends of the stream.

The work of gravity when AB falls to A′B′ is the same as that of
transferring AA′ to BB′; that is, GQt (z − z1). The work of the
pressures on the ends, reckoning that at B negative, because it is
opposite to the direction of motion, is (pω × vt) − (p1ω1 × v1t) =
Qt(p − p1). The change of kinetic energy in the time t is the difference
of the kinetic energy originally possessed by AA′ and that
finally acquired by BB′, for in the intermediate part A′B there is
no change of kinetic energy, in consequence of the steadiness of the
motion. But the mass of AA′ and BB′ is GQt/g, and the change of
kinetic energy is therefore (GQt/g) (v12/2 − v2/2). Equating this to the
work done on the mass AB,

GQt (z − z1) + Qt (p − p1) = (GQt/g) (v12/2 − v2/2).

Dividing by GQt and rearranging the terms,

v2/2g + p/G + z = v12/2g + p1/G + z1;

(1)

or, as A and B are any two points,

v2/2g + p/G + z = constant = H.

(2)

Now v2/2g is the head due to the velocity v, p/G is the head equivalent
to the pressure, and z is the elevation above the datum (see § 16).
Hence the terms on the left are the total head due to velocity,
pressure, and elevation at a given cross section of the filament, z is
easily seen to be the work in foot-pounds which would be done
by 1 ℔ of fluid falling to the datum line, and similarly p/G and
v2/2g are the quantities of work which would be done by 1 ℔ of fluid
due to the pressure p and velocity v. The expression on the left of
the equation is, therefore, the total energy of the stream at the
section considered, per ℔ of fluid, estimated with reference to the

datum line XX. Hence we see that in stream line motion, under
the restrictions named above, the total energy per ℔ of fluid is
uniformly distributed along the stream line. If the free surface of
the fluid OO is taken as the datum, and −h, −h1 are the depths of A
and B measured down from the free surface, the equation takes the
form

v2/2g + p/G − h = v12/2g + p1/G − h1;

(3)

or generally

v2/2g + p/G − h = constant.

(3a)


	

	Fig. 26.


§ 30. Second Form of the Theorem of Bernoulli.—Suppose at the
two sections A, B (fig. 26) of an elementary stream small vertical
pipes are introduced, which may be termed pressure columns
(§ 8), having their lower ends accurately parallel to the direction of
flow. In such tubes the water will rise to heights corresponding to
the pressures at A and B. Hence b = p/G, and b′ = p1/G. Consequently
the tops of the pressure columns A′ and B′ will be at
total heights b + c = p/G + z and b′ + c′ = p1/G + z1 above the datum
line XX. The difference of level of the pressure column tops, or
the fall of free surface level between A and B, is therefore

ξ = (p − p1) / G + (z − z1);

and this by equation (1), § 29 is (v12 − v2)/2g. That is, the fall of
free, surface level between two sections is equal to the difference
of the heights due to the velocities at the sections. The line A′B′
is sometimes called the line of hydraulic gradient, though this
term is also used in cases where friction needs to be taken into
account. It is the line the height of which above datum is the
sum of the elevation and pressure head at that point, and it falls
below a horizontal line A″B″ drawn at H ft. above XX by the
quantities a = v2/2g and a′ = v12/2g, when friction is absent.

§ 31. Illustrations of the Theorem of Bernoulli. In a lecture to
the mechanical section of the British Association in 1875, W. Froude
gave some experimental illustrations of the principle of Bernoulli.
He remarked that it was a common but erroneous impression that
a fluid exercises in a contracting pipe A (fig. 27) an excess of pressure
against the entire converging surface
which it meets, and that, conversely,
as it enters an enlargement B, a relief
of pressure is experienced by the
entire diverging surface of the pipe.
Further it is commonly assumed that
when passing through a contraction
C, there is in the narrow neck an
excess of pressure due to the squeezing together of the liquid at that
point. These impressions are in no respect correct; the pressure
is smaller as the section of the pipe is smaller and conversely.


	

	Fig. 27.


Fig. 28 shows a pipe so formed that a contraction is followed by
an enlargement, and fig. 29 one in which an enlargement is followed
by a contraction. The
vertical pressure columns
show the decrease of
pressure at the contraction
and increase of
pressure at the enlargement.
The line abc in
both figures shows the
variation of free surface
level, supposing the pipe
frictionless. In actual
pipes, however, work is
expended in friction
against the pipe; the
total head diminishes in proceeding along the pipe, and the free
surface level is a line such as ab1c1, falling below abc.

Froude further pointed out that, if a pipe contracts and enlarges
again to the same size, the resultant pressure on the converging part
exactly balances the resultant pressure on the diverging part so
that there is no tendency to move the pipe bodily when water flows
through it. Thus the conical part AB (fig. 30) presents the same
projected surface as HI, and the pressures parallel to the axis of
the pipe, normal to these projected surfaces, balance each other.
Similarly the pressures on BC, CD balance those on GH, EG. In
the same way, in any combination of enlargements and contractions,
a balance of pressures, due to the flow of liquid parallel to the
axis of the pipe, will be found, provided the sectional area and
direction of the ends are the same.


	

	Fig. 28.



	

	Fig. 29.


The following experiment is interesting. Two cisterns provided
with converging pipes were placed so that the jet from one was exactly
opposite the entrance to the other. The cisterns being filled
very nearly to the same level, the jet from the left-hand cistern A
entered the right-hand cistern B (fig. 31), shooting across the free
space between them without any waste, except that due to indirectness
of aim and want of exact correspondence in the form of the
orifices. In the actual experiment there was 18 in. of head in the
right and 201⁄2 in. of head in the left-hand cistern, so that about
21⁄2 in. were wasted in friction. It will be seen that in the open space
between the orifices there was no pressure, except the atmospheric
pressure acting uniformly throughout the system.


	

	Fig. 30.



	

	Fig. 31.


§ 32. Venturi Meter.—An ingenious application of the variation
of pressure and velocity in a converging and diverging pipe has been
made by Clemens Herschel in the construction of what he terms a
Venturi Meter for measuring the flow in water mains. Suppose that,
as in fig. 32, a contraction is made in a water main, the change of
section being gradual to avoid the production of eddies. The ratio ρ

of the cross sections at A and B, that is at inlet and throat, is in
actual meters 5 to 1 to 20 to 1, and is very carefully determined by
the maker of the meter. Then, if v and u are the velocities at A
and B, u = ρv.  Let pressure pipes be introduced at A, B and C,
and let H1, H, H2 be the pressure heads at those points. Since the
velocity at B is greater than at A the pressure will be less. Neglecting
friction

H1 + v2/2g = H + u2/2g,

H1 − H = (u2 − v2) / 2g = (ρ2 − 1) v2 2g.

Let h = H1 − H be termed the Venturi head, then

u = √ { ρ2.2gh / (ρ2 − 1) },

from which the velocity through the throat and the discharge of the
main can be calculated if the areas at A and B are known and h
observed. Thus if the diameters at A and B are 4 and 12 in., the
areas are 12.57 and 113.1 sq. in., and ρ = 9,

u = √ 81/80 √ (2gh) = 1.007 √ (2gh).

If the observed Venturi head is 12 ft.,

u = 28 ft. per sec.,

and the discharge of the main is

28 × 12.57 = 351 cub. ft. per sec.


	

	Fig. 32.



	

	Fig. 33.


Hence by a simple observation of pressure difference, the flow in
the main at any moment can be determined. Notice that the
pressure height at C will be the same as at A except for a small loss
hf due to friction and eddying between A and B. To get the pressure
at the throat very exactly Herschel surrounds it by an annular
passage communicating with the throat by several small holes,
sometimes formed in vulcanite to prevent corrosion. Though constructed
to prevent eddying as much as possible there is some eddy
loss. The main effect of this is to cause a loss of head between A
and C which may vary from a fraction of a foot to perhaps 5 ft.
at the highest velocities at which a meter can be used. The eddying
also affects a little the Venturi head h. Consequently an experimental
coefficient must be determined for each meter by tank measurement.
The range of this coefficient is, however, surprisingly small.
If to allow for friction, u = k √ {ρ2/(ρ2 − 1)} √(2gh), then Herschel
found values of k from 0.97 to 1.0 for throat velocities varying from
8 to 28 ft. per sec. The
meter is extremely convenient.
At Staines reservoirs
there are two meters
of this type on mains 94 in.
in diameter. Herschel contrived
a recording arrangement
which records the
variation of flow from hour
to hour and also the total
flow in any given time. In
Great Britain the meter is
constructed by G. Kent,
who has made improvements
in the recording arrangement.

In the Deacon Waste
Water Meter (fig. 33) a
different principle is used.
A disk D, partly counter-balanced
by a weight, is
suspended in the water flowing
through the main in a
conical chamber. The unbalanced
weight of the disk
is supported by the impact
of the water. If the discharge of the main increases the disk rises, but
as it rises its position in the chamber is such that in consequence of
the larger area the velocity is less. It finds, therefore, a new position
of equilibrium. A pencil P records on a drum moved by clockwork
the position of the disk, and from this the variation of flow is inferred.

§ 33. Pressure, Velocity and Energy in Different Stream Lines.—The
equation of Bernoulli gives the variation of pressure and velocity
from point to point along a stream line, and shows that the total
energy of the flow across any two sections is the same. Two other
directions may be defined, one normal to the stream line and in
the plane containing its radius of curvature at any point, the other
normal to the stream line and the radius of curvature. For the
problems most practically useful it will be sufficient to consider
the stream lines as parallel to a vertical or horizontal plane. If the
motion is in a vertical plane, the action of gravity must be taken
into the reckoning; if the motion is in a horizontal plane, the terms
expressing variation of elevation of the filament will disappear.3
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Let AB, CD (fig. 34) be two consecutive stream lines, at present
assumed to be in a vertical plane, and PQ a normal to these lines
making an angle φ with the vertical. Let P, Q be two particles
moving along these lines at a distance PQ = ds, and let z be the
height of Q above the horizontal plane with reference to which the
energy is measured, v its velocity, and p its pressure. Then, if H is
the total energy at Q per unit of weight of fluid,

H = z + p/G + v2/2g.

Differentiating, we get

dH = dz + dp/G + v dv/g,

(1)

for the increment of energy between Q and P. But

dz = PQ cos φ = ds cos φ;

∴ dH = dp/G + v dv/g + ds cos φ,

(1a)

where the last term disappears if the motion is in a horizontal plane.

Now imagine a small cylinder of section ω described round PQ
as an axis. This will be in equilibrium under the action of its
centrifugal force, its weight and the pressure on its ends. But its
volume is ωds and its weight Gω ds. Hence, taking the components
of the forces parallel to PQ—

ω dp = Gv2ω ds/gρ − Gω cos φ ds,

where ρ is the radius of curvature of the stream line at Q. Consequently,
introducing these values in (1),

dH = v2 ds/gρ + v dv/g = (v/g) (v/ρ + dv/ds) ds.

(2)

Currents

§ 34. Rectilinear Current.—Suppose the motion is in parallel
straight stream lines (fig. 35) in a vertical plane. Then ρ is infinite,
and from eq. (2), § 33,

dH = v dv/g.

Comparing this with (1) we see that

dz + dp/G = 0;

∴ z + p/G = constant;

(3)
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or the pressure varies hydrostatically as in a fluid at rest. For two
stream lines in a horizontal
plane, z is constant, and therefore
p is constant.

Radiating Current.—Suppose
water flowing radially between
horizontal parallel planes, at
a distance apart = δ. Conceive
two cylindrical sections of the
current at radii r1 and r2, where
the velocities are v1 and v2, and the pressures p1 and p2. Since the
flow across each cylindrical section of the current is the same,

Q = 2πr1 δv1 = 2πr2 δv2

r1v1 = r2v2

r1/r2 = v2/v1.

(4)



The velocity would be infinite at radius 0, if the current could be
conceived to extend to the axis. Now, if the motion is steady,

H = p1/G + v12/2g = p2/G + v22/2g;

= p2/G + r12 + v12 / r222g;

(p2 − p1) / G = v12 (1 − r12/r22) / 2g;

(5)

p2/G = H − r12v12 / r222g.

(6)

Hence the pressure increases from the interior outwards, in a way
indicated by the pressure columns in fig. 36, the curve through the
free surfaces of the pressure columns being, in a radial section, the
quasi-hyperbola of the form xy2 = c3. This curve is asymptotic to a
horizontal line, H ft. above the line from which the pressures are
measured, and to the axis of the current.


	

	Fig. 36.


Free Circular Vortex.—A free circular vortex is a revolving mass
of water, in which the stream lines are concentric circles, and in which
the total head for each stream line is the same. Hence, if by any
slow radial motion portions of the water strayed from one stream
line to another, they would take freely the velocities proper to their
new positions under the action of the existing fluid pressures only.

For such a current, the motion being horizontal, we have for all
the circular elementary streams

H = p/G + v2/2g = constant;

∴ dH = dp/G + v dv/g = 0.

(7)

Consider two stream lines at radii r and r + dr (fig. 36). Then in
(2), § 33, ρ = r and ds = dr,

v2 dr/gr + v dv/g = 0,

dv/v = −dr/r,

v ∞ 1/r,

(8)

precisely as in a radiating current; and hence the distribution
of pressure is the same, and formulae 5 and 6 are applicable to this
case.

Free Spiral Vortex.—As in a radiating and circular current the
equations of motion are the same, they will also apply to a vortex
in which the motion is compounded of these motions in any proportions,
provided the radial component of the motion varies inversely
as the radius as in a radial current, and the tangential
component varies inversely as the radius as in a free vortex. Then
the whole velocity at any point will be inversely proportional to
the radius of the point, and the fluid will describe stream lines
having a constant inclination to the radius drawn to the axis of the
current. That is, the stream lines will be logarithmic spirals.
When water is delivered from the circumference of a centrifugal
pump or turbine into a chamber, it forms a free vortex of this kind.
The water flows spirally outwards, its velocity diminishing and its
pressure increasing according to the law stated above, and the head
along each spiral stream line is constant.

§ 35. Forced Vortex.—If the law of motion in a rotating current is
different from that in a free vortex, some force must be applied to
cause the variation of velocity. The simplest case is that of a
rotating current in which all the particles have equal angular velocity,
as for instance when they are driven round by radiating paddles
revolving uniformly. Then in equation (2), § 33, considering two
circular stream lines of radii r and r + dr (fig. 37), we have ρ = r,
ds = dr. If the angular velocity is α, then v = αr and dv = αdr. Hence

dH = α2r dr/g + α2r dr/g = 2α2r dr/g.

Comparing this with (1), § 33, and putting dz = 0, because the motion
is horizontal,

dp/G + α2r dr/g = 2α2r dr/g,

dp/G = α2r dr/g,

p/G = α2/2g + constant.

(9)

Let p1, r1, v1 be the pressure, radius and velocity of one cylindrical
section, p2, r2, v2 those of another; then

p1/G − α2r12 / 2g = p2/G − α2r22/2g;

(p2 − p1) / G = α2 (r22 − r12) / 2g = (v22 − v12) / 2g.

(10)

That is, the pressure increases from within outwards in a curve
which in radial sections is a parabola, and surfaces of equal pressure
are paraboloids of revolution (fig. 37).


	

	Fig. 37.


Dissipation of Head in Shock

§ 36. Relation of Pressure and Velocity in a Stream in Steady
Motion when the Changes of Section of the Stream are Abrupt.—When
a stream changes section abruptly, rotating eddies are formed
which dissipate energy. The energy absorbed in producing rotation
is at once abstracted from that effective in causing the flow, and
sooner or later it is wasted by frictional resistances due to the rapid
relative motion of the eddying parts of the fluid. In such cases the
work thus expended internally in the fluid is too important to be
neglected, and the energy thus lost is commonly termed energy lost
in shock. Suppose fig. 38 to represent a stream having such an
abrupt change of section. Let AB, CD be normal sections at points
where ordinary stream line motion has not been disturbed and
where it has been re-established. Let ω, p, v be the area of section,
pressure and velocity at AB, and ω1, p1, v1 corresponding quantities
at CD. Then if no work were expended internally, and assuming
the stream horizontal, we should have

p/G + v2/2g = p1/G + v12/2g.

(1)



But if work is expended in producing irregular eddying motion, the
head at the section CD will be diminished.

Suppose the mass ABCD comes in a short time t to A′B′C′D′.
The resultant force parallel to the axis of the stream is

pω + p0 (ω1 − ω) − p1ω1,

where p0 is put for the unknown pressure on the annular space
between AB and EF. The impulse of that force is

{ pω + p0 (ω1 − ω) − p1ω1 } t.


	

	Fig. 38.


The horizontal change of momentum in the same time is the difference
of the momenta of
CDC′D′ and ABA′B′,
because the amount
of momentum between
A′B′ and CD
remains unchanged
if the motion is
steady. The volume
of ABA′B′ or CDC′D′,
being the inflow and
outflow in the time
t, is Qt = ωvt = ω1v1t,
and the momentum of
these masses is
(G/g) Qvt and (G/g) Qv1t.
The change of momentum
is therefore (G/g) Qt (v1 − v). Equating this to the impulse,

{ pω + p0 (ω1 − ω) − p1ω1 } t = (G/g) Qt (v1 − v).

Assume that p0 = p, the pressure at AB extending unchanged through
the portions of fluid in contact with AE, BF which lie out of the
path of the stream. Then (since Q = ω1v1)

(p − p1) = (G/g) v1 (v1 − v);

p/G − p1/G = v1 (v1 − v) / g;

(2)

p/G + v2/2g = p1/G + v12/2g + (v − v1)2 / 2g.

(3)

This differs from the expression (1), § 29, obtained for cases where
no sensible internal work is done, by the last term on the right.
That is, (v − v1)2 / 2g has to be added to the total head at CD, which
is p1/G + v12/2g, to make it equal to the total head at AB, or (v − v1)2 / 2g
is the head lost in shock at the abrupt change of section. But
(v − v1) is the relative velocity of the two parts of the stream. Hence,
when an abrupt change of section occurs, the head due to the relative
velocity is lost in shock, or (v − v1)2/2g foot-pounds of energy is
wasted for each pound of fluid. Experiment verifies this result,
so that the assumption that p0 = p appears to be admissible.

If there is no shock,

p1/G = p/G + (v2 − v12) / 2g.

If there is shock,

p1/G = p/G − v1 (v1 − v) / g.

Hence the pressure head at CD in the second case is less than in the
former by the quantity (v − v1)2 / 2g, or, putting ω1v1 = ωv, by the
quantity

(v2/2g) (1 − ω/ω1)2.

(4)

V. THEORY OF THE DISCHARGE FROM ORIFICES AND
MOUTHPIECES


	

	Fig. 39.


§ 37. Minimum Coefficient of Contraction. Re-entrant Mouthpiece
of Borda.—In one special case the coefficient of contraction
can be determined
theoretically, and, as
it is the case where
the convergence of the
streams approaching
the orifice takes place
through the greatest
possible angle, the coefficient
thus determined
is the minimum
coefficient.

Let fig. 39 represent
a vessel with vertical
sides, OO being the
free water surface, at
which the pressure is
pa. Suppose the liquid
issues by a horizontal
mouthpiece, which is
re-entrant and of the
greatest length which
permits the jet to
spring clear from the
inner end of the
orifice, without adhering
to its sides. With
such an orifice the
velocity near the
points CD is negligible,
and the pressure at those points may be taken equal to the hydrostatic
pressure due to the depth from the free surface. Let Ω be
the area of the mouthpiece AB, ω that of the contracted jet aa
Suppose that in a short time t, the mass OOaa comes to the position
O′O′ a′a′; the impulse of the horizontal external forces acting on
the mass during that time is equal to the horizontal change of
momentum.

The pressure on the side OC of the mass will be balanced by the
pressure on the opposite side OE, and so for all other portions
of the vertical surfaces of the mass, excepting the portion EF opposite the mouthpiece and the surface AaaB of the jet. On EF the pressure is
simply the hydrostatic pressure due to the depth, that is, (pa + Gh).
On the surface and section AaaB of the jet, the horizontal resultant
of the pressure is equal to the atmospheric pressure pa acting on the
vertical projection AB of the jet; that is, the resultant pressure is
−paΩ. Hence the resultant horizontal force for the whole mass
OOaa is (pa + Gh) Ω − paΩ = GhΩ. Its impulse in the time t is GhΩt.
Since the motion is steady there is no change of momentum between
O′O′ and aa. The change of horizontal momentum is, therefore,
the difference of the horizontal momentum lost in the space OOO′O′
and gained in the space aaa′a′. In the former space there is no
horizontal momentum.

The volume of the space aaa′a′ is ωvt; the mass of liquid in that
space is (G/g)ωvt; its momentum is (G/g)ωv2t. Equating impulse to
momentum gained,

GhΩt = (G/g) ωv2t;

∴ ω/Ω = gh/v2

But

v2 = 2gh, and ω/Ω = cc;

∴ ω/Ω = 1⁄2 = cc;

a result confirmed by experiment with mouthpieces of this kind.
A similar theoretical investigation is not possible for orifices in
plane surfaces, because the velocity along the sides of the vessel in
the neighbourhood of the orifice is not so small that it can be
neglected. The resultant horizontal pressure is therefore greater
than GhΩ, and the contraction is less. The experimental values of the
coefficient of discharge for a re-entrant mouthpiece are 0.5149
(Borda), 0.5547 (Bidone), 0.5324 (Weisbach), values which differ
little from the theoretical value, 0.5, given above.
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§ 38. Velocity of Filaments issuing in a Jet.—A jet is composed
of fluid filaments or elementary streams, which start into motion at
some point in the
interior of the vessel
from which the fluid
is discharged, and
gradually acquire
the velocity of the
jet. Let Mm, fig.
40 be such a filament,
the point M
being taken where
the velocity is insensibly
small, and
m at the most contracted
section of
the jet, where the
filaments have become
parallel and
exercise uniform mutual pressure. Take the free surface AB for
datum line, and let p1, v1, h1, be the pressure, velocity and depth
below datum at M; p, v, h, the corresponding quantities at m.
Then § 29, eq. (3a),

v12/2g + p1/G − h1 = v2/2g + p/G − h

(1)

But at M, since the velocity is insensible, the pressure is the hydrostatic
pressure due to the depth; that is v1 = 0, p1 = pa + Gh1. At
m, p = pa, the atmospheric pressure round the jet. Hence, inserting
these values,

0 + pa/G + h1 − h1 = v2/2g + pa / G − h;

v2/2g = h;

(2)

or

v = √ (2gh) = 8.025V √ h.

(2a)

That is, neglecting the viscosity of the fluid, the velocity of filaments
at the contracted section of the jet is simply the velocity due
to the difference of level
of the free surface in the
reservoir and the orifice.
If the orifice is small in
dimensions compared with
h, the filaments will all
have nearly the same velocity,
and if h is measured
to the centre of the orifice,
the equation above gives
the mean velocity of the
jet.

Case of a Submerged
Orifice.—Let the orifice
discharge below the level
of the tail water. Then
using the notation shown in fig. 41, we have at M, v1 = 0, p1 = Gh; + pa
at m, p = Gh3 + pa. Inserting these values in (3), § 29,

0 + h1 + pa/G − h1 = v2/2g + h3 − h22 + pa/G;

v2/2g = h2 − h3 = h,

(3)



where h is the difference of level of the head and tail water, and may
be termed the effective head producing flow.
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Case where the Pressures are different on the Free Surface and at
the Orifice.—Let the
fluid flow from a vessel
in which the pressure
is p0 into a vessel in
which the pressure is
p, fig. 42. The pressure
p0 will produce the
same effect as a layer
of fluid of thickness
p0/G added to the head
water; and the pressure
p, will produce
the same effect as a
layer of thickness p/G
added to the tail
water. Hence the
effective difference of
level, or effective head
producing flow, will
be

h = h0 + p0/G − p/G;

and the velocity of discharge will be

v = √ [ 2g { h0 + (p0 − p) / G } ].

(4)

We may express this result by saying that differences of pressure at
the free surface and at the orifice are to be reckoned as part of the
effective head.

Hence in all cases thus far treated the velocity of the jet is the
velocity due to the effective head, and the discharge, allowing for
contraction of the jet, is

Q = cωv = cω √ (2gh),

(5)

where ω is the area of the orifice, cω the area of the contracted
section of the jet, and h the effective head measured to the centre of
the orifice. If h and ω are taken in feet, Q is in cubic feet per second.

It is obvious, however, that this formula assumes that all the
filaments have sensibly the same velocity. That will be true for
horizontal orifices, and very approximately true in other cases, if
the dimensions of the orifice are not large compared with the head h.
In large orifices in say a vertical surface, the value of h is different
for different filaments, and then the velocity of different filaments is
not sensibly the same.

Simple Orifices—Head Constant
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§ 39. Large Rectangular Jets from Orifices in Vertical Plane Surfaces.—Let
an orifice in a vertical plane surface be so formed that it
produces a jet having
a rectangular contracted
section with
vertical and horizontal
sides. Let b (fig.
43) be the breadth of
the jet, h1 and h2 the
depths below the free
surface of its upper
and lower surfaces.
Consider a lamina of
the jet between the
depths h and h + dh.
Its normal section is
bdh, and the velocity
of discharge √2gh.
The discharge per
second in this lamina is therefore b√2gh dh, and that of the whole
jet is therefore

Q = ∫h2h1 b √ (2gh) dh

= 2⁄3 b √2g { h23/2  − h13/2 },

(6)

where the first factor on the right is a coefficient depending on the
form of the orifice.

Now an orifice producing a rectangular jet must itself be very
approximately rectangular. Let B be the breadth, H1, H2, the
depths to the upper and lower edges of the orifice. Put

b (h23/2  − h13/2) / B (H23/2  − H13/2) = c.

(7)

Then the discharge, in terms of the dimensions of the orifice, instead
of those of the jet, is

Q = 2⁄3 cB √2g (H23/2  − H13/2),

(8)

the formula commonly given for the discharge of rectangular orifices.
The coefficient c is not, however, simply the coefficient of contraction,
the value of which is

b (h2 − h1) / B (H2 − H1),

and not that given in (7). It cannot be assumed, therefore, that c
in equation (8) is constant, and in fact it is found to vary for different
values of B/H2 and B/H1, and must be ascertained experimentally.

Relation between the Expressions (5) and (8).—For a rectangular
orifice the area of the orifice is ω = B(H2 − H1), and the depth measured
to its centre is 1⁄2 (H2 + H1). Putting these values in (5),

Q1 = cB (H2 − H1) √ {g (H2 + H1) }.

From (8) the discharge is

Q2 = 2⁄3 cB √2g (H23/2 − H13/2).

Hence, for the same value of c in the two cases,

Q2/Q1 = 2⁄3 (H23/2 − H13/2) / [ (H2 − H1) √ { (H2 + H1)/2} ].

Let H1/H2 = σ, then

Q2/Q1 = 0.9427 (1 − σ3/2) / {1 − σ √ (1 + σ) }.


(9)

If H1 varies from 0 to ∞, σ( = H1/H2) varies from 0 to 1. The
following table gives values of the two estimates of the discharge
for different values of σ:—


	H1/H2 = σ. 	Q2/Q1. 	H1/H2 = σ. 	Q2/Q1.

	0.0 	.943 	0.8 	.999

	0.2 	.979 	0.9 	.999

	0.5 	.995 	1.0 	1.000

	0.7 	.998 	  	 



Hence it is obvious that, except for very small values of σ, the
simpler equation (5) gives values sensibly identical with those of
(8). When σ < 0.5 it is better to use equation (8) with values of
c determined experimentally for the particular proportions of orifice
which are in question.
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§ 40. Large Jets having a Circular Section from Orifices in a Vertical
Plane Surface.—Let fig. 44 represent the section of the jet, OO being
the free surface level in the reservoir. The discharge through the
horizontal strip aabb, of breadth aa = b, between the depths h1 + y
and h1 + y + dy, is

dQ = b √ {2g (h1 + y) } dy.

The whole discharge of the jet is

Q = ∫d0 b √ { 2g (h1 + y) } dy.

But b = d sin φ; y = 1⁄2d (1 − cos φ); dy = 1⁄2d sin φ dφ. Let ε = d/(2h1 + d),
then

Q = 1⁄2d2 √ { 2g (h1 + d/2) } ∫π0 sin2 φ √1 − ε cos φ dφ.

From eq. (5), putting ω = πd2/4, h = h1 + d/2, c = 1 when d is the
diameter of the jet and not that of the orifice,

Q1 = 1⁄4πd2 √ {2g (h1 + d/2) },

Q/Q1 = 2/π ∫π0 sin2 φ √ {1 − ε cos φ} dφ.

For

h1 = ∞, ε = 0 and Q/Q1 = 1;

and for

h1 = 0, ε = 1 and Q/Q1 = 0.96.

So that in this case also the difference between the simple formula
(5) and the formula above, in which the variation of head at different
parts of the orifice is taken into account, is very small.

Notches and Weirs

§ 41. Notches, Weirs and Byewashes.—A notch is an orifice extending
up to the free surface level in the reservoir from which the
discharge takes place. A weir is a structure over which the water
flows, the discharge being in the same conditions as for a notch.
The formula of discharge for an orifice of this kind is ordinarily
deduced by putting H1 = 0 in the formula for the corresponding orifice,
obtained as in the preceding section. Thus for a rectangular notch,
put H1 = 0 in (8). Then

Q = 2⁄3 cB √(2g) H3/2,

(11)

where H is put for the depth to the crest of the weir or the bottom
of the notch. Fig. 45 shows the mode in which the discharge occurs
in the case of a rectangular notch or weir with a level crest. As, the
free surface level falls very sensibly near the notch, the head H
should be measured at some distance back from the notch, at a
point where the velocity of the water is very small.

Since the area of the notch opening is BH, the above formula is
of the form

Q = c × BH × k √(2gH),

where k is a factor depending on the form of the notch and expressing
the ratio of the mean velocity of discharge to the velocity due to the
depth H.
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§ 42. Francis’s Formula for Rectangular Notches.—The jet discharged
through a rectangular notch has a section smaller than BH,
(a) because of the fall of the water surface from the point where H

is measured towards the weir, (b) in consequence of the crest contraction,
(c) in consequence of the end contractions. It may be
pointed out that while the diminution of the section of the jet due
to the surface fall and
to the crest contraction
is proportional to the
length of the weir, the
end contractions have
nearly the same effect
whether the weir is wide
or narrow.

J. B. Francis’s experiments
showed that a
perfect end contraction,
when the heads varied
from 3 to 24 in., and
the length of the weir
was not less than three
times the head, diminished
the effective
length of the weir by
an amount approximately
equal to one-tenth
of the head.
Hence, if l is the length
of the notch or weir, and
H the head measured
behind the weir where
the water is nearly still,
then the width of the
jet passing through the
notch would be l − 0.2H,
allowing for two end
contractions. In a weir
divided by posts there
may be more than two
end contractions.
Hence, generally, the
width of the jet is l − 0.1nH, where n is the number of end contractions
of the stream. The contractions due to the fall of surface and to the
crest contraction are proportional to the width of the jet. Hence, if cH
is the thickness of the stream over the weir, measured at the contracted
section, the section of the jet will be c(l − 0.1nH)H and (§ 41) the
mean velocity will be 2⁄3 √(2gH). Consequently the discharge will
be given by an equation of the form

Q = 2⁄3 c (l − 0.1nH) H √2gH

= 5.35c (l − 0.1nH) H3/2.

This is Francis’s formula, in which the coefficient of discharge c is
much more nearly constant for different values of l and h than in
the ordinary formula. Francis found for c the mean value 0.622,
the weir being sharp-edged.

§ 43. Triangular Notch (fig. 46).—Consider a lamina issuing between
the depths h and h + dh. Its area, neglecting contraction, will
be bdh, and the velocity at that depth is √(2gh). Hence the discharge
for this lamina is

b√2gh dh.

But

B/b = H / (H − h); b = B (H − h) / H.

Hence discharge of lamina

= B(H − h) √(2gh) dh/H;

and total discharge of notch

= Q = B √(2g) ∫H0 (H − h) h1/2 dh/H

= 4⁄15 B √(2g) H3/2.

or, introducing a coefficient to allow for contraction,

Q = 4⁄15 cB √(2g) H1/2,
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When a notch is used to gauge a stream of varying flow, the ratio
B/H varies if the notch is rectangular, but is constant if the notch is
triangular. This led Professor James Thomson to suspect that the
coefficient of discharge,
c, would
be much more
constant  with
different values
of H in a triangular
than in a
rectangular
notch, and this
has been experimentally
shown
to be the case.
Hence a triangular
notch is more suitable for accurate gaugings than a rectangular
notch. For a sharp-edged triangular notch Professor J. Thomson
found c = 0.617. It will be seen, as in § 41, that since 1⁄2BH is the
area of section of the stream through the notch, the formula is
again of the form

Q = c × 1⁄2BH × k √(2gH),

where k = 8⁄15 is the ratio of the mean velocity in the notch to the
velocity at the depth H. It may easily be shown that for all notches
the discharge can be expressed in this form.

Coefficients for the Discharge over Weirs, derived from the Experiments of T. E. Blackwell. When more than one experiment was made with the
same head, and the results were pretty uniform, the resulting coefficients are marked with an (*). The effect of the converging wing-boards
is very strongly marked.


	Heads in

inches

measured

from still

Water in

Reservoir. 	Sharp Edge. 	Planks 2 in. thick,

square on Crest. 	Crests 3 ft. wide.

	3 ft. long. 	10 ft. long. 	3 ft. long. 	6 ft. long. 	10 ft. long.
	10 ft. long,

wing-boards

making an

angle of 60°.
	3 ft. long.

level. 	3 ft. long,

fall 1 in 18.
	3 ft. long,

fall 1 in 12. 	6 ft. long.

level.
	10 ft. long.

level. 	10 ft. long,

fall 1 in 18.

	1 	.677 	.809  	.467  	.459 	.4354 	.754 	.452 	.545 	.467 	.. 	.381 	.467

	2 	.675 	.803  	.509* 	.561  	.585* 	.675 	.482 	.546 	.533 	.. 	.479* 	.495*

	3 	.630 	.642* 	.563* 	.597* 	.569* 	.. 	.441 	.537 	.539 	.492* 	.. 	..

	4 	.617 	.656  	.549  	.575  	.602* 	.656 	.419 	.431 	.455 	.497* 	.. 	.515

	5 	.602 	.650* 	.588  	.601* 	.609* 	.671 	.479 	.516 	.. 	.. 	.518 	..

	6 	.593 	.. 	.593* 	.608* 	.576* 	.. 	.501* 	.. 	.531 	.507  	.513 	.543

	7 	.. 	.. 	.617* 	.608* 	.576* 	.. 	.488 	.513 	.527 	.497  	.. 	..

	8 	.. 	.581  	.606* 	.590* 	.548* 	.. 	.470 	.491 	.. 	.. 	.468 	.507

	9 	.. 	.530  	.600  	.569* 	.558* 	.. 	.476 	.492* 	.498 	.480* 	.486 	..

	10 	.. 	.. 	.614* 	.539  	.534* 	.. 	.. 	.. 	.. 	.465* 	.455 	..

	12 	.. 	.. 	.. 	.525  	.534* 	.. 	.. 	.. 	.. 	.467* 	.. 	..

	14 	.. 	.. 	.. 	.549* 	.. 	.. 	.. 	.. 	.. 	.. 	.. 	..




	

	Fig. 47.


§ 44. Weir with a Broad Sloping Crest.—Suppose a weir formed
with a broad crest so sloped that the streams flowing over it have a
movement sensibly rectilinear and uniform (fig. 47). Let the inner
edge be so rounded as to prevent a crest contraction. Consider a
filament aa′, the point a being so far back from the weir that the
velocity of approach is negligible. Let OO be the surface level in the
reservoir, and let a be at a height h″ below OO, and h′ above a′.
Let h be the distance from OO to the weir crest and e the thickness
of the stream upon it. Neglecting atmospheric pressure, which has
no influence, the pressure at a is Gh″; at a′ it is Gz. If v be the
velocity at a′,

v2/2g = h′ + h″ − z = h − e;

Q = be √2g (h − e).

Theory does not furnish a value for e, but Q = 0 for e = 0 and for
e = h. Q has therefore a maximum for a value of e between 0 and h,
obtained by equating dQ/de to zero. This gives e = 2⁄3h, and, inserting
this value,

Q = 0.385 bh √2gh,

as a maximum value of the discharge with the conditions assigned.
Experiment shows that the actual discharge is very approximately
equal to this maximum, and the formula is more legitimately applicable
to the discharge over broad-crested weirs and to cases such
as the discharge with free upper surface through large masonry

sluice openings than the ordinary weir formula for sharp-edged
weirs. It should be remembered, however, that the friction on
the sides and crest of the weir has been neglected, and that this
tends to reduce a little the discharge. The formula is equivalent
to the ordinary weir formula with c = 0.577.

Special Cases of Discharge from Orifices

§ 45. Cases in which the Velocity of Approach needs to be taken
into Account. Rectangular Orifices and Notches.—In finding the
velocity at the orifice in the preceding investigations, it has been
assumed that the head h has been measured from the free surface
of still water above the orifice. In many cases which occur in
practice the channel of approach to an orifice or notch is not so
large, relatively to the stream through the orifice or notch, that the
velocity in it can be disregarded.


	

	Fig. 48.


Let h1, h2 (fig. 48) be the heads measured from the free surface to
the top and bottom edges of a rectangular orifice, at a point in the
channel of approach where the velocity is u. It is obvious that a
fall of the free surface,

ɧ = u2/2g

has been somewhere expended in producing the velocity u, and
hence the true heads measured in still water would have been h1 + ɧ
and h2 + ɧ. Consequently the discharge, allowing for the velocity
of approach, is

Q = 2⁄3 cb √2g { (h2 + ɧ)3/2 − (h1 + ɧ)3/2 }.

(1)

And for a rectangular notch for which h1 = 0, the discharge is

Q = 2⁄3 cb √2g { (h2 + ɧ)3/2 − ɧ3/2 }.

(2)

In cases where u can be directly determined, these formulae give the
discharge quite simply. When, however, u is only known as a
function of the section of the stream in the channel of approach, they
become complicated. Let Ω be the sectional area of the channel
where h1 and h2 are measured. Then u = Q/Ω and ɧ = Q2/2g Ω2.

This value introduced in the equations above would render them
excessively cumbrous. In cases therefore where Ω only is known,
it is best to proceed by approximation. Calculate an approximate
value Q′ of Q by the equation

Q′ = 2⁄3 cb √2g {h23/2 − h13/2 }.

Then ɧ = Q′2/2gΩ2 nearly. This value of ɧ introduced in the equations
above will give a second and much more approximate value of Q.


	

	Fig. 49.


§ 46. Partially Submerged Rectangular Orifices and Notches.—When
the tail water is above the lower but below the upper edge
of the orifice, the flow in the two parts of the orifice, into which it
is divided by the surface of the tail water, takes place under different
conditions. A filament M1m1 (fig. 49) in the upper part of the
orifice issues with a head h′ which may have any value between
h1 and h. But a filament M2m2 issuing in the lower part of the
orifice has a velocity due to h″ − h″′, or h, simply. In the upper part
of the orifice the head is variable, in the lower constant. If Q1, Q2
are the discharges from the upper and lower parts of the orifice,
b the width of the orifice, then

Q1 = 2⁄3 cb √2g { h3/2 − h13/2 }

Q2 = cb (h2 − h) √2gh.

(3)

In the case of a rectangular notch or weir, h1 = 0. Inserting this
value, and adding the two portions of the discharge together, we get
for a drowned weir

Q = cb √2gh (h2 − h/3),

(4)

where h is the difference of level of the head and tail water, and h2
is the head from the free surface above the weir to the weir crest
(fig. 50).

From some experiments by Messrs A. Fteley and F.P. Stearns
(Trans. Am. Soc. C.E., 1883, p. 102) some values of the coefficient c
can be reduced


	h3/h2 	c 	h3/h2 	c

	0.1 	0.629 	0.7  	0.578

	0.2 	0.614 	0.8  	0.583

	0.3 	0.600 	0.9  	0.596

	0.4 	0.590 	0.95 	0.607

	0.5 	0.582 	1.00 	0.628

	0.6 	0.578 	  	 



If velocity of approach is taken into account, let ɧ be the head due
to that velocity; then, adding ɧ to each of the heads in the equations
(3), and reducing, we get for a weir

Q = cb √2g [ (h2 + ɧ) (h + ɧ)1/2 − 1⁄3 (h + ɧ)3/2 − 2⁄3 ɧ3/2 ];

(5)

an equation which may be useful in estimating flood discharges.


	

	Fig. 50.


Bridge Piers and other Obstructions in Streams.—When the piers
of a bridge are erected in a stream they create an obstruction to the
flow of the stream, which
causes a difference of surface-level
above and below the
pier (fig. 51). If it is necessary
to estimate this difference
of level, the flow
between the piers may be
treated as if it occurred over
a drowned weir. But the
value of c in this case is
imperfectly known.

§ 47. Bazin’s Researches on
Weirs.—H. Bazin has executed a long series of researches on the
flow over weirs, so systematic and complete that they almost
supersede other observations. The account of them is contained
in a series of papers in the Annales des Ponts et Chaussées
(October 1888, January 1890, November 1891, February 1894,
December 1896, 2nd trimestre 1898). Only a very abbreviated
account can be given here. The general plan of the experiments
was to establish first the coefficients of discharge for a standard
weir without end contractions; next to establish weirs of other
types in series with the standard weir on a channel with steady
flow, to compare the observed heads on the different weirs and
to determine their coefficients from the discharge computed at
the standard weir. A channel was constructed parallel to the
Canal de Bourgogne, taking water from it through three sluices
0.3 × 1.0 metres. The water enters a masonry chamber 15 metres
long by 4 metres wide where it is stilled and passes into the canal
at the end of which is the standard weir. The canal has a length
of 15 metres, a width of 2 metres and a depth of 0.6 metres. From
this extends a channel 200 metres in length with a slope of 1 mm.
per metre. The channel is 2 metres wide with vertical sides. The
channels were constructed of concrete rendered with cement. The
water levels were taken in chambers constructed near the canal,
by floats actuating an index on a dial. Hook gauges were used in
determining the heads on the weirs.


	

	Fig. 51.


Standard Weir.—The weir crest was 3.72 ft. above the bottom
of the canal and formed by a plate 1⁄4 in. thick. It was sharp-edged
with free overfall. It was as wide as the canal so that end contractions
were suppressed, and enlargements were formed below
the crest to admit air under the water sheet. The channel below
the weir was used as a gauging tank. Gaugings were made with the
weir 2 metres in length and afterwards with the weir reduced to
1 metre and 0.5 metre in length, the end contractions being suppressed
in all cases. Assuming the general formula

Q = mlh √(2gh),

(1)



Bazin arrives at the following values of m:—

Coefficients of Discharge of Standard Weir.


	Head h metres. 	Head h feet. 	m

	0.05 	 .164 	0.4485

	0.10 	 .328 	0.4336

	0.15 	 .492 	0.4284

	0.20 	 .656 	0.4262

	0.25 	 .820 	0.4259

	0.30 	 .984 	0.4266

	0.35 	1.148 	0.4275

	0.40 	1.312 	0.4286

	0.45 	1.476 	0.4299

	0.50 	1.640 	0.4313

	0.55 	1.804 	0.4327

	0.60 	1.968 	0.4341



Bazin compares his results with those of Fteley and Stearns in 1877
and 1879, correcting for a different velocity of approach, and finds
a close agreement.

Influence of Velocity of Approach.—To take account of the velocity
of approach u it is usual to replace h in the formula by h + au2/2g
where α is a coefficient not very well ascertained. Then

Q = μl (h + αu2/2g) √ { 2g (h + αu2/2g) }

= μlh √(2gh) (1 + αu2/2gh)3/2.

(2)

The original simple equation can be used if

m = μ (1 + αu2/2gh)3/2

or very approximately, since u2/2gh is small,

m = μ (1 + 3⁄2αu2/2gh).

(3)


	

	Fig. 52.


Now if p is the height of the weir crest above the bottom of the
canal (fig. 52), u = Q/l(p + h).
Replacing Q by its value
in (1)

u2/2gh = Q2 / {2ghl2(p + h)2} = m2 {h/(p + h) }2,

(4)

so that (3) may be written

m = μ [1 + k {h/(p + h)}2 ].

(5)

Gaugings were made with
weirs of 0.75, 0.50, 0.35, and
0.24 metres height above
the canal bottom and the
results compared with those of the standard weir taken at the same
time. The discussion of the results leads to the following values of
m in the general equation (1):—

m = μ (1 + 2.5u2/2gh)

= μ [1 + 0.55 {h/(p + h)}2 ].

Values of μ—


	Head h metres. 	Head h feet. 	μ

	0.05 	 .164 	0.4481

	0.10 	 .328 	0.4322

	0.20 	 .656 	0.4215

	0.30 	 .984 	0.4174

	0.40 	1.312 	0.4144

	0.50 	1.640 	0.4118

	0.60 	1.968 	0.4092



An approximate formula for μ is:

μ = 0.405 + 0.003/h (h in metres)

μ = 0.405 + 0.01/h (h in feet).

Inclined Weirs.—-Experiments were made in which the plank weir
was inclined up or down stream, the crest being sharp and the end
contraction suppressed. The following are coefficients by which
the discharge of a vertical weir should be multiplied to obtain the
discharge of the inclined weir.


	  	Coefficient.

	Inclination 	up stream 	1 to 1 	0.93

	” 	” 	3 to 2 	0.94

	” 	” 	3 to 1 	0.96

	Vertical weir 	.. 	1.00

	Inclination 	down stream 	3 to 1 	1.04

	” 	” 	3 to 2 	1.07

	” 	” 	1 to 1 	1.10

	” 	” 	1 to 2 	1.12

	” 	” 	1 to 4 	1.09



The coefficient varies appreciably, if h/p approaches unity, which
case should be avoided.


	

	Fig. 53.

	

	Fig. 54.


In all the preceding cases the sheet passing over the weir is detached
completely from the weir and its under-surface is subject
to atmospheric pressure. These conditions permit the most exact
determination of the coefficient of discharge. If the sides of the
canal below the weir are not so arranged as to permit the access
of air under the sheet, the phenomena are more complicated. So
long as the head does not exceed a certain limit the sheet is detached
from the weir, but encloses a volume of air which is at less than
atmospheric pressure, and the tail water rises under the sheet.
The discharge is a little greater than for free overfall. At greater
head the air disappears from below the sheet and the sheet is said
to be “drowned.” The drowned sheet may be independent of the
tail water level or influenced by it. In the former case the fall is
followed by a rapid, terminating in a standing wave. In the latter
case when the foot of the
sheet is drowned the level
of the tail water influences
the discharge even if it is
below the weir crest.

Weirs with Flat Crests.—The
water sheet may spring
clear from the upstream edge
or may adhere to the flat
crest falling free beyond the
down-stream edge. In the
former case the condition is that of a sharp-edged weir and it is
realized when the head is at least double the width of crest. It may
arise if the head is at least 11⁄2 the width of crest. Between these
limits the condition of the sheet is unstable. When the sheet
is adherent the coefficient m depends on the ratio of the head h
to the width of crest c (fig. 53), and is given by the equation
m = m1 [0.70 + 0.185h/c], where m1 is the coefficient for a
sharp-edged
weir in similar conditions.
Rounding the upstream
edge even to a small
extent modifies the discharge.
If R is the radius
of the rounding the coefficient
m is increased in
the ratio 1 to 1 + R/h nearly.
The results are limited to R
less than 1⁄2 in.

Drowned Weirs.—Let h
(fig. 54) be the height of
head water and h1 that of
tail water above the weir crest. Then Bazin obtains as the approximate
formula for the coefficient of discharge

m = 1.05m1 [1 + 1⁄5 h1/p] 3√ { (h − h1) / h },


	

	Fig. 55.


where as before m1 is the coefficient for a sharp-edged weir in similar
conditions, that is,
when the sheet is
free and the weir
of the same height.

§ 48. Separating
Weirs.—Many
towns derive their
water-supply from
streams in high
moorland districts,
in which the
flow is extremely variable. The water is collected in large storage
reservoirs, from which an uniform supply can be sent to the town. In
such cases it is desirable to separate the coloured water which comes
down the streams in high floods from the purer water of ordinary
flow. The latter is sent into the reservoirs; the former is allowed

to flow away down the original stream channel, or is stored in
separate reservoirs and used as compensation water. To accomplish
the separation of the flood and ordinary water, advantage is taken of
the different horizontal range of the parabolic path of the water
falling over a weir, as the depth on the weir and, consequently, the
velocity change. Fig. 55 shows one of these separating weirs in the
form in which they were first introduced on the Manchester Waterworks;
fig. 56 a more modern weir of the same kind designed by
Sir A. Binnie for the Bradford Waterworks. When the quantity of
water coming down the stream is not excessive, it drops over the
weir into a transverse channel leading to the reservoirs. In flood,
the water springs over the mouth of this channel and is led into a
waste channel.


	

	Fig. 56.


It may be assumed, probably with accuracy enough for practical
purposes, that the particles describe the parabolas due to the mean
velocity of the water passing over the weir, that is, to a velocity

2⁄3 √(2gh),

where h is the head above the crest of the weir.

Let cb = x be the width of the orifice and ac = y the difference of
level of its edges (fig. 57). Then, if a particle passes from a to b in t
seconds,

y = 1⁄2 gt2, x = 2⁄3 √(2gh)t;

∴ y = 9⁄16 x2/h,

which gives the width x for any given difference of level y and head
h, which the jet will just pass over the orifice. Set off ad vertically
and equal to 1⁄2g on any scale; af horizontally and equal to 2⁄3 √(gh).
Divide af, fe into an equal number of equal parts. Join a with the
divisions on ef. The intersections of these lines with verticals from
the divisions on af give the parabolic path of the jet.


	

	Fig. 57.


Mouthpieces—Head Constant

§ 49. Cylindrical Mouthpieces.—When water issues from a short
cylindrical pipe or mouthpiece of a length at least equal to l1⁄2 times
its smallest transverse dimension, the stream, after contraction within
the mouthpiece, expands to fill it and issues full bore, or without
contraction, at the point of discharge. The discharge is found to
be about one-third greater than that from a simple orifice of the
same size. On the other hand, the energy of the fluid per unit of
weight is less than that of the stream from a simple orifice with the
same head, because part of the energy is wasted in eddies produced
at the point where the stream expands to fill the mouthpiece, the
action being something like that which occurs at an abrupt change
of section.

Let fig. 58 represent a vessel discharging through a cylindrical
mouthpiece at the depth h from the free surface, and let the axis of
the jet XX be taken as the datum with reference to which the head
is estimated. Let Ω be the area of the mouthpiece, ω the area of
the stream at the contracted section EF. Let v, p be the velocity
and pressure at EF, and v1, p1 the same quantities at GH. If the
discharge is into the air, p1 is equal to the atmospheric pressure pa.

The total head of any filament which goes to form the jet, taken
at a point where its velocity is sensibly zero, is h + pa/G; at EF the
total head is v2/2g + p/G; at GH it is v12/2g + p1/G.

Between EF and GH there is a loss of head due to abrupt change
of velocity, which from eq. (3), § 36, may have the value

(v − v1)2/2g.

Adding this head lost to the head at GH, before equating it to the
heads at EF and at the point where the filaments start into motion,—

h + pa/G = v2/2g + p/G = v12/2g + p1/G + (v − v1)2/2g.

But ωv = Ωv1, and ω = ccΩ, if cc is the coefficient of contraction within
the mouthpiece. Hence

v = Ωv1/ω = v1/cc.

Supposing the discharge into the air, so that p1 = pa,

h + pa/G = v12/2g + pa/G + (v12/2g) (1/cc − 1)2;

(v1/2g) {1 + (1/cc − 1)2} = h;

∴ v1 = √(2gh) / √ {1 + (1/cc − 1)2 };


(1)


	

	Fig. 58.


where the coefficient on the right is evidently the coefficient of velocity
for the cylindrical
mouthpiece in terms of
the coefficient of contraction
at EF. Let
cc = 0.64, the value for
simple orifices, then the
coefficient of velocity is

cv = 1/√ {1 + (1/cc − 1)2 } = 0.87

(2)

The actual value of cv,
found by experiment is
0.82, which does not
differ more from the
theoretical value than
might be expected if
the friction of the
mouthpiece is allowed
for. Hence, for mouthpieces of this kind, and for the section at
GH,

cv = 0.82   cc = 1.00   c = 0.82,

Q = 0.82Ω √(2gh).

It is easy to see from the equations that the pressure p at EF is
less than atmospheric pressure. Eliminating v1, we get

(pa − p)/G = 3⁄4 h nearly;

(3)

or

p = pa − 3⁄4 Gh ℔ per sq. ft.

If a pipe connected with a reservoir on a lower level is introduced
into the mouthpiece at the part where the contraction is formed
(fig. 59), the water will rise in this pipe to a height

KL = (pa − p) / G = 3⁄4 h nearly.

If the distance X is less than this, the water from the lower reservoir
will be forced continuously into the jet by the atmospheric pressure,
and discharged with it. This is the crudest form of a kind of pump
known as the jet pump.

§ 50. Convergent Mouthpieces.—With convergent mouthpieces
there is a contraction within the mouthpiece causing a loss of head,
and a diminution of the velocity of discharge, as with cylindrical
mouthpieces. There is also a second contraction of the stream outside
the mouthpiece. Hence the discharge is given by an equation
of the form

Q = cvccΩ √(2gh),

(4)

where Ω is the area of the external end of the mouthpiece, and ccΩ
the section of the contracted jet beyond the mouthpiece.

Convergent Mouthpieces (Castel’s Experiments).—Smallest diameter of
orifice = 0.05085 ft. Length of mouthpiece = 2.6 Diameters.


	Angle of

Convergence. 	Coefficient of

Contraction,

cc 	Coefficient of

Velocity,

cv 	Coefficient of

Discharge,

c

	 0°  0′ 	 .999 	.830 	.829

	 1° 36′ 	1.000 	.866 	.866

	 3° 10′ 	1.001 	.894 	.895

	 4° 10′ 	1.002 	.910 	.912

	 5° 26′ 	1.004 	.920 	.924

	 7° 52′ 	 .998 	.931 	.929

	 8° 58′ 	 .992 	.942 	.934

	10° 20′ 	 .987 	.950 	.938

	12° 4′ 	 .986 	.955 	.942

	13° 24′ 	 .983 	.962 	.946

	14° 28′ 	 .979 	.966 	.941

	16° 36′ 	 .969 	.971 	.938

	19° 28′ 	 .953 	.970 	.924

	21°  0′ 	 .945 	.971 	.918

	23°  0′ 	 .937 	.974 	.913

	29° 58′ 	 .919 	.975 	.896

	40° 20′ 	 .887 	.980 	.869

	48° 50′ 	 .861 	.984 	.847



The maximum coefficient of discharge is that for a mouthpiece
with a convergence of 13°24′.




	
	

	Fig. 59.
	Fig. 60.


The values of cv and cc must here be determined by experiment.
The above table gives values sufficient for practical purposes. Since
the contraction beyond
the mouthpiece increases
with the convergence, or,
what is the same thing,
cc diminishes, and on the
other hand the loss of
energy diminishes, so
that cv increases with
the convergence, there
is an angle for which the
product cc cv, and consequently
the discharge,
is a maximum.

§ 51. Divergent Conoidal
Mouthpiece.—Suppose
a mouthpiece so
designed that there is
no abrupt change in the
section or velocity of
the stream passing
through it. It may
have a form at the
inner end approximately
the same as
that of a simple contracted vein, and may then enlarge gradually,
as shown in fig. 60. Suppose that at EF it becomes
cylindrical, so that the jet may be taken to be of the diameter
EF. Let ω, v, p be the section, velocity and pressure at CD,
and Ω, v1, p1 the same quantities at EF, pa being as usual the
atmospheric pressure, or pressure on the free surface AB. Then,
since there is no loss of
energy, except the small
frictional resistance of the
surface of the mouthpiece,

h + pa/G = v2/2g + p/G
           = v12/2g + p1/G.

If the jet discharges into
the air, p1 = pa; and

v12/2g = h;

v1 = √(2gh);

or, if a coefficient is introduced
to allow for friction,

v1 = cv √(2gh);

where cv is about 0.97 if
the mouthpiece is smooth
and well formed.

Q = Ω v1 = cv Ω √(2gh).


	

	Fig. 61.


Hence the discharge depends
on the area of the
stream at EF, and not at
all on that at CD, and the
latter may be made as
small as we please without
affecting the amount of
water discharged.

There is, however, a limit to this.  As the velocity at CD is greater
than at EF the pressure is less, and therefore less than atmospheric
pressure, if the discharge is into the air. If CD is so contracted that
p = 0, the continuity of flow is impossible. In fact the stream
disengages itself from the
mouthpiece for some value
of p greater than 0 (fig. 61).

From the equations,

p/G = pa/G − (v2 − v12) / 2g.

Let Ω/ω = m. Then

v = v1m;

p/G = pa/G − v12 (m2 − 1) / 2g

= pa/G − (m2 − 1) h;

whence we find that p/G
will become zero or negative
if

Ω/ω ≥ √ {(h + pa/G) / h }
    = √ {1 + pa/Gh};

or, putting pa/G = 34 ft., if

Ω/ω ≥ √ { (h + 34)/h}.

In practice there will be an interruption of the full bore flow with
a less ratio of Ω/ω, because of the disengagement of air from the water.
But, supposing this does not occur, the maximum discharge of a
mouthpiece of this kind is

Q = ω √ {2g (h + pa/G) };

that is, the discharge is the same as for a well-bell-mouthed mouthpiece
of area ω, and without the expanding part, discharging into
a vacuum.

§ 52. Jet Pump.—A divergent mouthpiece may be arranged to act
as a pump, as shown in fig. 62. The water which supplies the energy
required for pumping enters at A. The water to be pumped enters
at B. The streams combine at DD where the velocity is greatest
and the pressure least. Beyond DD the stream enlarges in section,
and its pressure increases, till it is sufficient to balance the head due
to the height of the lift, and the water flows away by the discharge
pipe C.


	

	Fig. 62.


Fig. 63 shows the whole arrangement in a diagrammatic way.
A is the reservoir which supplies the water that effects the pumping;
B is the reservoir of water to be pumped; C is the reservoir into
which the water is pumped.


	

	Fig. 63.


Discharge with Varying Head

§ 53. Flow from a Vessel when the Effective Head varies with the
Time.—Various useful problems arise relating to the time of emptying
and filling vessels, reservoirs, lock chambers, &c., where the flow
is dependent on a head which increases or diminishes during the
operation. The simplest of these problems is the case of filling or
emptying a vessel of constant horizontal section.


	

	Fig. 64.


Time of Emptying or Filling a Vertical-sided Lock Chamber.—Suppose
the lock chamber, which has a water surface of Ω square
ft., is emptied through a sluice in the tail gates, of area ω, placed
below the tail-water level. Then the effective head producing flow
through the sluice is the difference of level in the chamber and tail
bay. Let H (fig. 64) be the initial difference of level, h the difference
of level after t seconds. Let −dh be the fall of level in the chamber
during an interval dt. Then in the time dt the volume in the chamber
is altered by the amount −Ωdh, and the outflow from the sluice in
the same time is cω √(2gh) dt. Hence the differential equation connecting
h and t is

cω √(2gh) dt + Ωh = 0.



For the time t, during which the initial head H diminishes to any
other value h,

−{Ω/(cω √2g) } ∫hH dh/√h = ∫0t dt.

∴ t = 2Ω (√H − √h) / {cω √(2g)}

= (Ω/cω) {√(2H/g) − √(2h/g) }.

For the whole time of emptying, during which h diminishes from
H to 0,

T = (Ω/cω) √(2H/g).

Comparing this with the equation for flow under a constant head,
it will be seen that the time is double that required for the discharge
of an equal volume under a constant head.

The time of filling the lock through a sluice in the head gates is
exactly the same, if the sluice is below the tail-water level. But if
the sluice is above the tail-water level, then the head is constant
till the level of the sluice is reached, and afterwards it diminishes
with the time.

Practical Use of Orifices in Gauging Water

§ 54. If the water to be measured is passed through a known orifice
under an arrangement by which the constancy of the head is ensured,
the amount which passes in a given time can be ascertained by the
formulae already given. It will obviously be best to make the
orifices of the forms for which the coefficients are most accurately
determined; hence sharp-edged orifices or notches are most commonly
used.

Water Inch.—For measuring small quantities of water circular
sharp-edged orifices have been used. The discharge from a circular
orifice one French inch in diameter, with a head of one line above the
top edge, was termed by the older hydraulic writers a water-inch.
A common estimate of its value was 14 pints per minute, or 677
English cub. ft. in 24 hours. An experiment by C. Bossut gave
634 cub. ft. in 24 hours (see Navier’s edition of Belidor’s Arch.
Hydr., p. 212).

L. J. Weisbach points out that measurements of this kind would be
made more accurately with a greater head over the orifice, and he
proposes that the head should be equal to the diameter of the orifice.
Several equal orifices may be used for larger discharges.


	

	Fig. 65.


Pin Ferrules or Measuring Cocks.—To give a tolerably definite
supply of water to houses, without the expense of a meter, a ferrule
with an orifice of a definite size, or a cock, is introduced in the
service-pipe. If the head in the water main is constant, then a
definite quantity of water would be delivered in a given time. The
arrangement is not a very satisfactory one, and acts chiefly as a
check on extravagant use of water. It is interesting here chiefly as
an example of regulation of discharge by means of an orifice. Fig. 65
shows a cock of
this kind used at
Zurich. It consists
of three cocks, the
middle one having
the orifice of the
predetermined size
in a small circular
plate, protected by
wire gauze from
stoppage by impurities
in the
water. The cock
on the right hand
can be used by the
consumer for emptying the pipes. The one on the left and the
measuring cock are connected by a key which can be locked by a
padlock, which is under the control of the water company.

§ 55. Measurement of the Flow in Streams.—To determine the
quantity of water flowing off the ground in small streams, which is
available for water supply or for obtaining water power, small
temporary weirs are often used. These may be formed of planks
supported by piles and puddled to prevent leakage. The measurement
of the head may be made by a thin-edged scale at a short
distance behind the weir, where the water surface has not begun to
slope down to the weir and where the velocity of approach is not
high. The measurements are conveniently made from a short pile
driven into the bed of the river, accurately level with the crest of
the weir (fig. 66). Then if at any moment the head is h, the discharge
is, for a rectangular notch of breadth b,

Q = 2⁄3 cbh √2gh

where c = 0.62; or, better, the formula in § 42 may be used.

Gauging weirs are most commonly in the form of rectangular
notches; and care should be taken that the crest is accurately
horizontal, and that the weir is normal to the direction of flow of
the stream. If the planks are thick, they should be bevelled (fig. 67),
and then the edge may be protected by a metal plate about 1⁄10th
in. thick to secure the requisite accuracy of form and sharpness of
edge. In permanent gauging weirs, a cast steel plate is sometimes
used to form the edge of the weir crest. The weir should be large
enough to discharge the maximum volume flowing in the stream,
and at the same time it is desirable that the minimum head should
not be too small (say half a foot) to decrease the effects of errors of
measurement. The section of the jet over the weir should not exceed
one-fifth the section of the stream behind the weir, or the velocity
of approach will need to be taken into account. A triangular notch
is very suitable for measurements of this kind.


	

	Fig. 66.


If the flow is variable, the head h must be recorded at equidistant
intervals of time, say twice daily, and then for each 12-hour period
the discharge must be calculated for the mean of the heads at the
beginning and end of the time. As this involves a good deal of
troublesome calculation, E. Sang proposed to use a scale so graduated
as to read off the discharge in cubic feet per second. The lengths of
the principal graduations of such a scale are easily calculated by
putting Q = 1, 2, 3 ... in the ordinary formulae for notches;
the intermediate graduations may be taken accurately enough by
subdividing equally the distances between the principal graduations.


	

	Fig. 67.



	

	Fig. 68.


The accurate measurement of the discharge of a stream by means
of a weir is, however, in practice, rather more difficult than might
be inferred from
the simplicity of
the principle of the
operation.  Apart
from the difficulty
of selecting a suitable
coefficient of
discharge, which
need not be serious
if the form of the
weir and the nature
of its crest are properly
attended to,
other difficulties of
measurement arise. The length of the
weir should be very accurately determined,
and if the weir is rectangular
its deviations from exactness of level
should be tested. Then the agitation
of the water, the ripple on its surface,
and the adhesion of the water to the
scale on which the head is measured,
are liable to introduce errors. Upon a
weir 10 ft. long, with 1 ft. depth of
water flowing over, an error of 1-1000th
of a foot in measuring the head, or an
error of 1-100th of a foot in measuring
the length of the weir, would cause an
error in computing the discharge of
2 cub. ft. per minute.

Hook Gauge.—For the determination
of the surface level of water, the most
accurate instrument is the hook gauge
used first by U. Boyden of Boston, in
1840. It consists of a fixed frame with
scale and vernier. In the instrument
in fig. 68 the vernier is fixed to the
frame, and the scale slides vertically.
The scale carries at its lower end a hook
with a fine point, and the scale can be
raised or lowered by a fine pitched
screw. If the hook is depressed below
the water surface and then raised by the screw, the moment of its
reaching the water surface will be very distinctly marked, by the
reflection from a small capillary elevation of the water surface over
the point of the hook. In ordinary light, differences of level of the
water of .001 of a foot are easily detected by the hook gauge. If such
a gauge is used to determine the heads at a weir, the hook should

first be set accurately level with the weir crest, and a reading taken.
Then the difference of the reading at the water surface and that
for the weir crest will be the head at the weir.

§ 56. Modules used in Irrigation.—In distributing water for
irrigation, the charge for the water may be simply assessed on the
area of the land irrigated for each consumer, a method followed in
India; or a regulated quantity of water may be given to each
consumer, and the charge may be made proportional to the quantity
of water supplied, a method employed for a long time in Italy and
other parts of Europe. To deliver a regulated quantity of water
from the irrigation channel, arrangements termed modules are used.
These are constructions intended to maintain a constant or approximately
constant head above an orifice of fixed size, or to regulate
the size of the orifice so as to give a constant discharge, notwithstanding
the variation of level in the irrigating channel.


	

	Fig. 69.


§ 57. Italian Module.—The Italian modules are masonry constructions,
consisting of a regulating chamber, to which water is admitted
by an adjustable sluice from the canal. At the other end of the
chamber is an orifice in a thin flagstone of fixed size. By means
of the adjustable sluice a tolerably constant head above the fixed
orifice is maintained, and therefore there is a nearly constant discharge
of ascertainable amount through the orifice, into the channel
leading to the fields which are to be irrigated.


	

	 Fig. 70.—Scale 1⁄100.


In fig. 69, A is the adjustable sluice by which water is admitted
to the regulating chamber, B is the fixed orifice through which the
water is discharged. The sluice A is adjusted from time to time by
the canal officers, so as to bring the level of the water in the regulating
chamber to a fixed level marked on the wall of the chamber. When
adjusted it is locked. Let ω1 be the area of the
orifice through the sluice at A, and ω2 that of the
fixed orifice at B; let h1 be the difference of level
between the surface of the water in the canal and
regulating chamber; h2 the head above the centre of
the discharging orifice, when the sluice has been
adjusted and the flow has become steady; Q the
normal discharge in cubic feet per second. Then,
since the flow through the orifices at A and B is the same,

Q = c1ω1 √(2gh1) = c2ω2 √(2gh2),

where c1 and c2 are the coefficients of discharge suitable for the two
orifices. Hence

c1ω1 / c2ω2 = √(h2/h1).

If the orifice at B opened directly into the canal without any
intermediate regulating chamber, the discharge would increase for
a given change of level in the canal in exactly the same ratio. Consequently
the Italian module in no way moderates the fluctuations of
discharge, except so far as it affords means of easy adjustment from
time to time. It has further the advantage that the cultivator, by
observing the level of the water in the chamber, can always see
whether or not he is receiving the proper quantity of water.

On each canal the orifices are of the same height, and intended to
work with the same normal head, the width of the orifices being
varied to suit the demand for water. The unit of discharge varies on
different canals, being fixed in each case by legal arrangements.
Thus on the Canal Lodi the unit of discharge or one module of water
is the discharge through an orifice 1.12 ft. high, 0.12416 ft. wide,
with a head of 0.32 ft. above the top edge of the orifice, or .88 ft.
above the centre. This corresponds to a discharge of about 0.6165
cub. ft. per second.


	

	Fig. 71.


In the most elaborate Italian modules the regulating chamber is
arched over, and its dimensions are very exactly prescribed. Thus
in the modules of the Naviglio Grande of Milan, shown in fig. 70,
the measuring orifice is cut in a thin stone slab, and so placed that
the discharge is into the air with free contraction on all sides. The
adjusting sluice is placed with its sill flush with the bottom of the
canal, and is provided with a rack and lever and locking arrangement.
The covered regulating chamber is about 20 ft. long, with
a breadth 1.64 ft. greater than that of the discharging orifice. At
precisely the normal level of the water in the regulating chamber,
there is a ceiling of planks intended to still the agitation of the
water. A block of stone serves to indicate the normal level of
the water in the chamber. The water is discharged into an open
channel 0.655 ft. wider than the orifice, splaying out till it is 1.637
ft. wider than the orifice, and about 18 ft. in length.

§ 58. Spanish Module.—On the canal of Isabella II., which supplies
water to Madrid, a module much more perfect in principle than the
Italian module is employed. Part of the water is supplied for irrigation,
and as it is very valuable its
strict measurement is essential. The
module (fig. 72) consists of two
chambers one above the other, the
upper chamber being in free communication
with the irrigation canal, and
the lower chamber discharging by a
culvert to the fields. In the arched
roof between the chambers there is a
circular sharp-edged orifice in a bronze
plate. Hanging in this there is a
bronze plug of variable diameter suspended
from a hollow brass float. If
the water level in the canal lowers, the
plug descends and gives an enlarged
opening, and conversely. Thus a perfectly
constant discharge with a varying
head can be obtained, provided no
clogging or silting of the chambers prevents
the free discharge of the water
or the rise and fall of the float. The theory of the module is very
simple. Let R (fig. 71) be the radius of the fixed opening, r the
radius of the plug at a distance h from the plane of flotation of the
float, and Q the required discharge of the module. Then

Q = cπ (R2 − r2) √(2gh).

Taking c = 0.63,

Q = 15.88 (R2 − r2) √h;

r = √ {R2 − Q/15.88 √h}.

Choosing a value for R, successive values of r can be found for
different values of h, and from these the curve of the plug can be
drawn. The module shown in fig. 72 will discharge 1 cubic metre per
second. The fixed opening is 0.2 metre diameter, and the greatest
head above the fixed orifice is 1 metre. The use of this module
involves a great sacrifice of level between the canal and the fields.
The module is described in Sir C. Scott-Moncrieff’s Irrigation in
Southern Europe.

§ 59. Reservoir Gauging Basins.—In obtaining the power to store
the water of streams in reservoirs, it is usual to concede to riparian

owners below the reservoirs a right to a regulated supply throughout
the year. This compensation water requires to be measured in
such a way that the millowners and others interested in the matter
can assure themselves that they are receiving a proper quantity, and
they are generally allowed a certain amount of control as to the
times during which the daily supply is discharged into the stream.


	

	Fig. 72.


Fig. 74 shows an arrangement designed for the Manchester water
works. The water enters from the reservoir at chamber A, the object
of which is to still the irregular motion of the water. The admission
is regulated by sluices at b, b, b. The water is discharged by orifices
or notches at a, a, over which a tolerably constant head is maintained
by adjusting the sluices at b, b, b. At any time the millowners can
see whether the discharge is given and whether the proper head is
maintained over the orifices. To test at any time the discharge of
the orifices, a gauging basin B is provided. The water ordinarily
flows over this, without entering it, on a floor of cast-iron plates.
If the discharge is to be tested, the water is turned for a definite time
into the gauging basin, by suddenly opening and closing a sluice at c.
The volume of flow can be ascertained from the depth in the gauging
chamber. A mechanical arrangement (fig. 73) was designed for
securing an absolutely constant head over the orifices at a, a. The
orifices were formed in a cast-iron plate capable of sliding up and
down, without sensible leakage, on the face of the wall of the chamber.
The orifice plate was attached by a link to a lever, one end of which
rested on the wall and the other on floats f in the chamber A. The
floats rose and fell with the changes of level in the chamber, and
raised and lowered the orifice plate at the same time. This
mechanical arrangement was not finally adopted, careful watching
of the sluices at b, b, b, being sufficient to secure a regular discharge.
The arrangement is then equivalent to an Italian module, but on a
large scale.


	

	Fig. 73.—Scale 1⁄120.



	

	Fig. 74.—Scale 1⁄500.


§ 60. Professor Fleeming Jenkin’s Constant Flow Valve.—In the
modules thus far described constant discharge is obtained by varying
the area of the orifice through which the water flows. Professor
F. Jenkin has contrived a valve in which a constant pressure head
is obtained, so that the orifice need not be varied (Roy. Scot. Society

of Arts, 1876). Fig. 75 shows a valve of this kind suitable for a
6-in. water main. The water arriving by the main C passes through
an equilibrium valve D into the chamber A, and thence through a
sluice O, which can be set for any required area of opening, into the
discharging main B. The object of the arrangement is to secure a
constant difference of pressure between the chambers A and B, so
that a constant discharge flows through the stop valve O. The
equilibrium valve D is rigidly connected with a plunger P loosely
fitted in a diaphragm, separating A from a chamber B2 connected by
a pipe B1 with the discharging main B. Any increase of the difference
of pressure in A and B will drive the plunger up and close the
equilibrium valve, and conversely a decrease of the difference of
pressure will cause the descent of the plunger and open the equilibrium
valve wider. Thus a constant difference of pressure is obtained in
the chambers A and B. Let ω be the area of the plunger in square
feet, p the difference of pressure in the chambers A and B in pounds
per square foot, w the weight of the plunger and valve. Then if at
any moment pω exceeds w the plunger will rise, and if it is less than
w the plunger will descend. Apart from friction, and assuming the
valve D to be strictly an equilibrium valve, since ω and w are
constant, p must be constant also, and equal to w/ω. By making w
small and ω large, the difference of pressure required to ensure the
working of the apparatus may be made very small. Valves working
with a difference of pressure of 1⁄2 in. of water have been constructed.


	

	Fig. 75.—Scale 1⁄24.


VI. STEADY FLOW OF COMPRESSIBLE FLUIDS.


	

	Fig. 76.


§ 61. External Work during the Expansion of Air.—If air expands
without doing any external work, its temperature remains constant.
This result was first
experimentally demonstrated
by J. P. Joule.
It leads to the conclusion
that, however air
changes its state, the internal
work done is proportional
to the change
of temperature. When,
in expanding, air does
work against an external
resistance, either heat
must be supplied or the
temperature falls.

To fix the conditions,
suppose 1 ℔ of air confined
behind a piston of
1 sq. ft. area (fig. 76).
Let the initial pressure
be p1 and the volume of
the air v1, and suppose
this to expand to the
pressure p2 and volume
v2. If p and v are the corresponding pressure and volume at any
intermediate point in the expansion, the work done on the piston
during the expansion from v to v + dv is pdv, and the whole work
during the expansion from v1 to v2, represented by the area abcd, is

∫v2v1 p dv.

Amongst possible cases two may be selected.

Case 1.—So much heat is supplied to the air during expansion
that the temperature remains constant. Hyperbolic expansion.

Then

pv = p1v1.

Work done during expansion per pound of air

= ∫v2v1 p dv = p1v1 ∫v2v1 dv/v

= p1v1 logε v2 / v1 = p1v1 logε p1 / p2.

(1)

Since the weight per cubic foot is the reciprocal of the volume per
pound, this may be written

(p1/G1) logε G1/G2.

(1a)

Then the expansion curve ab is a common hyperbola.

Case 2.—No heat is supplied to the air during expansion. Then
the air loses an amount of heat equivalent to the external work done
and the temperature falls. Adiabatic expansion.

In this case it can be shown that

pvγ = p1v1γ,

where γ is the ratio of the specific heats of air at constant pressure
and volume. Its value for air is 1.408, and for dry steam 1.135.

Work done during expansion per pound of air.

 = ∫v2v1 p dv = p1v1γ ∫v2v1 dv/vγ

	 
= −{p1v1γ / (γ − 1)} {1/v2γ−1 −  1/v1γ−1}

= {p1v1γ / (γ − 1)} {1/v1γ−1 − 1/v2γ−1}

= {p1v1 / (γ − 1)} {1 − (v1/v2) γ−1}.


 


(2)

The value of p1v1 for any given temperature can be found from the
data already given.

As before, substituting the weights G1, G2 per cubic foot for the
volumes per pound, we get for the work of expansion

(p1/G1) {1/(γ − 1)} {1 − (G2/G1) γ−1},

(2a)

= p1v1 {1/(γ − 1)} {1 − (p2/p1) γ−1/γ}.

(2b)


	

	Fig. 77.


§ 62. Modification of the Theorem of Bernoulli for the Case of a
Compressible Fluid.—In the application of the principle of work to a
filament of compressible fluid, the internal work done by the expansion
of the fluid, or absorbed
in its compression, must be
taken into account. Suppose,
as before, that AB (fig. 77)
comes to A′B′ in a short time t.
Let p1, ω1, v1, G1 be the pressure,
sectional area of stream,
velocity and weight of a cubic
foot at A, and p2, ω2, v2, G2 the
same quantities at B. Then, from the steadiness of motion, the
weight of fluid passing A in any given time must be equal to the
weight passing B:

G1ω1v1t = G2ω2v2t.

Let z1, z2 be the heights of the sections A and B above any given
datum. Then the work of gravity on the mass AB in t seconds is

G1ω1v1t (z1 − z2) = W (z1 − z2) t,

where W is the weight of gas passing A or B per second. As in
the case of an incompressible fluid, the work of the pressures on the
ends of the mass AB is

p1ω1v1t − p2ω2v2t,

= (p1/G1 − p2/G2) Wt.

The work done by expansion of Wt ℔ of fluid between A and B is
∫v2v1
The change of kinetic energy as before is (W/2g) (v22 − v12) t.
Hence, equating work to change of kinetic energy,

W (z1 − z2) t + (p1/G1 − p2/G2)Wt +
Wt ∫v2v1 p dv = (W/2g) (v22 − v12) t;

∴ z1 + p1/G1 + v12/2g = z2 + p2/G2 + v22/2g −
∫v2v1 p dv.


(1)

Now the work of expansion per pound of fluid has already been
given. If the temperature is constant, we get (eq. 1a, § 61)

Z1 + P1/G1 + v12/2g = z2 + p2/G2 + v22/2g − (p1/G1) logε (G1/G2).

But at constant temperature p1/G1 = p2/G2;

∴ z1 + v12/2g = z2 + v22/2g − (p1/G1) logε (p1/p2),

(2)

or, neglecting the difference of level,

(v22 − v12) / 2g = (p1/G1) logε (p1/p2).

(2a)

Similarly, if the expansion is adiabatic (eq. 2a, § 61),

z1 + p1/G1 + v12/2g = z2 + p2/G2 + v22/2g − (p1/G1)
 {1/(γ − 1) } {1 − (p2/p1)(γ−1)/γ};

(3)

or, neglecting the difference of level,

(v22 − v12)/2g = (p1/G1) [1 + 1/(γ − 1) {1 − (p2/p1)(γ−1)/γ)} ] − p2/G2.

(3a)

It will be seen hereafter that there is a limit in the ratio p1/p2 beyond
which these expressions cease to be true.

§ 63. Discharge of Air from an Orifice.—The form of the equation
of work for a steady stream of compressible fluid is

z1 + p1/G1 + v12/2g = z2 + p2/G2 + v22/2g −
 (p1/G1) {1/(γ − 1)} {1 − (p2/p1(γ−1)/γ},



the expansion being adiabatic, because in the flow of the streams of
air through an orifice no sensible amount of heat can be communicated
from outside.

Suppose the air flows from a vessel, where the pressure is p1 and
the velocity sensibly zero, through an orifice, into a space where the
pressure is p2. Let v2 be the velocity of the jet at a point where the
convergence of the streams has ceased, so that the pressure in the
jet is also p2. As air is light, the work of gravity will be small
compared with that of the pressures and expansion, so that z1z2
may be neglected. Putting these values in the equation above—

p1/G1 = p2/G2 + v22/2g − (p1/G1) {1/(γ − 1)} {1 − (p2/p1)(γ−1)/γ;

v22/2g = p1/G1 − p2/G2 + (p1/G1) {1/(γ − 1)} {1 − (p2/p1)(γ−1)/γ}

= (p1/G1) {γ/(γ − 1) − (p2/p1)γ−1 /γ / (γ − 1)} − p2/G2.

But

p1/G1γ = p2/G2γ   ∴ p2/G2 = (p1/G1) (p2/p1)(γ−1)/γ

v22/2g = (p1/G1) {γ/(γ − 1)} {1 − (p2/p1)(γ−1)/γ};

(1)

or

v22/2g = {γ/(γ − 1)} {(p1/G1) − (p2/G2)};

an equation commonly ascribed to L. J. Weisbach (Civilingenieur,
1856), though it appears to have been given earlier by A. J. C. Barre
de Saint Venant and L. Wantzel.

It has already (§ 9, eq. 4a) been seen that

p1/G1 = (p0/G0) (τ1/τ0)

where for air p0 = 2116.8, G0 = .08075 and τ0 = 492.6.

v22/2g = {p0τ1γ / G0τ0 (γ − 1)} {1 − (p2/p1)(γ−1)/γ};

(2)

or, inserting numerical values,

v22/2g = 183.6τ1 {1 − (p2/p1)0.29};

(2a)

which gives the velocity of discharge v2 in terms of the pressure and
absolute temperature, p1, τ1, in the vessel from which the air flows,
and the pressure p2 in the vessel into which it flows.

Proceeding now as for liquids, and putting ω for the area of the
orifice and c for the coefficient of discharge, the volume of air discharged
per second at the pressure p2 and temperature τ2 is

Q2 = cωv2 = cω √ [(2gγp1 / (γ − 1) G1) (1 − (p2/p1)(γ−1)/γ)]

= 108.7cω √ [τ1 {1 − (p2/p1)0.29}].

(3)

If the volume discharged is measured at the pressure p1 and
absolute temperature τ1 in the vessel from which the air flows, let
Q1 be that volume; then

p1Q1γ = p2Q2γ;

Q1 = (p2/p1)1/γ Q2;

Q1 = cω √ [ {2gγp1 / (γ − 1) G1} {(p2/p1)2/γ − (p2/p1)(γ+1)/γ}].

Let

(p2/p1)2/γ − (p2/p1)(γ−1)/γ = (p2/p1)1.41 − (p2/p1)1.7 = ψ; then

Q1 = cω √ [2gγp1ψ / (γ − 1) G1]

= 108.7cω √ (τ1ψ).

(4)

The weight of air at pressure p1 and temperature τ1 is

G1 = p1/53.2τ1 ℔ per cubic foot.

Hence the weight of air discharged is

W = G1Q1 = cω √ [2gγp1G1ψ / (γ − 1)]

= 2.043cωp1 √ (ψ/τ1).

(5)

Weisbach found the following values of the coefficient of discharge
c:—


	Conoidal mouthpieces of the form of the 	 

	  contracted vein with effective pressures 	c =

	  of .23 to 1.1 atmosphere 	0.97 	to 	0.99

	Circular sharp-edged orifices 	0.563 	” 	0.788

	Short cylindrical mouthpieces 	0.81 	” 	0.84

	The same rounded at the inner end 	0.92 	” 	0.93

	Conical converging mouthpieces 	0.90 	” 	0.99



§ 64. Limit to the Application of the above Formulae.—In the
formulae above it is assumed that the fluid issuing from the orifice
expands from the pressure p1 to the pressure p2, while passing from
the vessel to the section of the jet considered in estimating the area
ω. Hence p2 is strictly the pressure in the jet at the plane of the
external orifice in the case of mouthpieces, or at the plane of the
contracted section in the case of simple orifices. Till recently it
was tacitly assumed that this pressure p2 was identical with the
general pressure external to the orifice. R. D. Napier first discovered
that, when the ratio p2/p1 exceeded a value which does not greatly
differ from 0.5, this was no longer true. In that case the expansion
of the fluid down to the external pressure is not completed at the
time it reaches the plane of the contracted section, and the pressure
there is greater than the general external pressure; or, what amounts
to the same thing, the section of the jet where the expansion is completed
is a section which is greater than the area ccω of the contracted
section of the jet, and may be greater than the area ω of the orifice.
Napier made experiments with steam which showed that, so long as
p2/p1 > 0.5, the formulae above were trustworthy, when p2 was taken
to be the general external pressure, but that, if p2/p1 < 0.5, then the
pressure at the contracted section was independent of the external
pressure and equal to 0.5p1. Hence in such cases the constant value
0.5 should be substituted in the formulae for the ratio of the internal
and external pressures p2/p1.

It is easily deduced from Weisbach’s theory that, if the pressure
external to an orifice is gradually diminished, the weight of air discharged
per second increases to a maximum for a value of the ratio

	 
p2/p1 = {2/(γ + 1)}γ−1/γ

= 0.527 for air

= 0.58 for dry steam.


 


For a further decrease of external pressure the discharge diminishes,—a
result no doubt improbable. The new view of Weisbach’s
formula is that from the point where the maximum is reached, or
not greatly differing from it, the pressure at the contracted section
ceases to diminish.

A. F. Fliegner showed (Civilingenieur xx., 1874) that for air flowing
from well-rounded mouthpieces there is no discontinuity of the
law of flow, as Napier’s hypothesis implies, but the curve of flow
bends so sharply that Napier’s rule may be taken to be a good
approximation to the true law. The limiting value of the ratio
p2/p1, for which Weisbach’s formula, as originally understood, ceases
to apply, is for air 0.5767; and this is the number to be substituted
for p2/p1 in the formulae when p2/p1 falls below that value. For later
researches on the flow of air, reference may be made to G. A. Zeuner’s
paper (Civilingenieur, 1871), and Fliegner’s papers (ibid., 1877,
1878).

VII. FRICTION OF LIQUIDS.

§ 65. When a stream of fluid flows over a solid surface, or conversely
when a solid moves in still fluid, a resistance to the motion
is generated, commonly termed fluid friction. It is due to the viscosity
of the fluid, but generally the laws of fluid friction are very
different from those of simple viscous resistance. It would appear
that at all speeds, except the slowest, rotating eddies are formed by
the roughness of the solid surface, or by abrupt changes of velocity
distributed throughout the fluid; and the energy expended in producing
these eddying motions is gradually lost in overcoming the
viscosity of the fluid in regions more or less distant from that where
they are first produced.

The laws of fluid friction are generally stated thus:—

1. The frictional resistance is independent of the pressure between
the fluid and the solid against which it flows. This may be verified
by a simple direct experiment. C. H. Coulomb, for instance, oscillated
a disk under water, first with atmospheric pressure acting on
the water surface, afterwards with the atmospheric pressure removed.
No difference in the rate of decrease of the oscillations was observed.
The chief proof that the friction is independent of the pressure is
that no difference of resistance has been observed in water mains
and in other cases, where water flows over solid surfaces under widely
different pressures.

2. The frictional resistance of large surfaces is proportional to the
area of the surface.

3. At low velocities of not more than 1 in. per second for water,
the frictional resistance increases directly as the relative velocity of
the fluid and the surface against which it flows. At velocities of
1⁄2 ft. per second and greater velocities, the frictional resistance is
more nearly proportional to the square of the relative velocity.

In many treatises on hydraulics it is stated that the frictional
resistance is independent of the nature of the solid surface. The
explanation of this was supposed to be that a film of fluid remained
attached to the solid surface, the resistance being generated between
this fluid layer and layers more distant from the surface. At extremely
low velocities the solid surface does not seem to have much
influence on the friction. In Coulomb’s experiments a metal surface
covered with tallow, and oscillated in water, had exactly the same
resistance as a clean metal surface, and when sand was scattered over
the tallow the resistance was only very slightly increased. The
earlier calculations of the resistance of water at higher velocities in
iron and wood pipes and earthen channels seemed to give a similar
result. These, however, were erroneous, and it is now well understood
that differences of roughness of the solid surface very greatly influence
the friction, at such velocities as are common in engineering
practice. H. P. G. Darcy’s experiments, for instance, showed that
in old and incrusted water mains the resistance was twice or sometimes
thrice as great as in new and clean mains.

§ 66. Ordinary Expressions for Fluid Friction at Velocities not
Extremely Small.—Let f be the frictional resistance estimated in
pounds per square foot of surface at a velocity of 1 ft. per second;
ω the area of the surface in square feet; and v its velocity in feet
per second relatively to the water in which it is immersed. Then,
in accordance with the laws stated above, the total resistance of the
surface is

R = fωv2

(1)

where f is a quantity approximately constant for any given surface.
If

ξ = 2gf/G,

R = ξGωv2/2g,

(2)

where ξ is, like f, nearly constant for a given surface, and is termed
the coefficient of friction.

The following are average values of the coefficient of friction for
water, obtained from experiments on large plane surfaces, moved in
an indefinitely large mass of water.




	  	Coefficient

of Friction,

ξ 	Frictional

Resistance in

℔ per sq. ft.

f

	New well-painted iron plate 	.00489 	.00473

	Painted and planed plank (Beaufoy) 	.00350 	.00339

	Surface of iron ships (Rankine) 	.00362 	.00351

	Varnished surface (Froude) 	.00258 	.00250

	Fine sand surface (Froude) 	.00418 	.00405

	Coarser sand surface (Froude) 	.00503 	.00488



The distance through which the frictional resistance is overcome
is v ft. per second. The work expended in fluid friction is therefore
given by the equation—

Work expended = fωv3 foot-pounds per second

       = ξGωv3/2g    ”    ”

(3).

The coefficient of friction and the friction per square foot of
surface can be indirectly obtained from observations of the discharge
of pipes and canals. In obtaining them, however, some assumptions
as to the motion of the water must be made, and it will be better
therefore to discuss these values in connexion with the cases to
which they are related.

Many attempts have been made to express the coefficient of
friction in a form applicable to low as well as high velocities. The
older hydraulic writers considered the
resistance termed fluid friction to be
made up of two parts,—a part due
directly to the distortion of the mass of
water and proportional to the velocity
of the water relatively to the solid surface,
and another part due to kinetic
energy imparted to the water striking
the roughnesses of the solid surface and
proportional to the square of the
velocity. Hence they proposed to take

ξ = α + β/v

in which expression the second term is
of greatest importance at very low
velocities, and of comparatively little
importance at velocities over about 1⁄2 ft.
per second. Values of ξ expressed in this
and similar forms will be given in connexion
with pipes and canals.

All these expressions must at present
be regarded as merely empirical expressions
serving practical purposes.

The frictional resistance will be seen
to vary through wider limits than these
expressions allow, and to depend on circumstances of which they do
not take account.

§ 67. Coulomb’s Experiments.—The first direct experiments on
fluid friction were made by Coulomb, who employed a circular disk
suspended by a thin brass wire and oscillated in its own plane. His
experiments were chiefly made at very low velocities. When the
disk is rotated to any given angle, it oscillates under the action of its
inertia and the torsion of the wire. The oscillations diminish
gradually in consequence of the work done in overcoming the friction
of the disk. The diminution furnishes a means of determining the
friction.


	

	Fig. 78.


Fig. 78 shows Coulomb’s apparatus. LK supports the wire and
disk: ag is the brass wire, the torsion of which causes the oscillations;
DS is a graduated
disk serving to measure
the angles through which
the apparatus oscillates.
To this the friction disk
is rigidly attached hanging
in a vessel of water.
The friction disks were
from 4.7 to 7.7 in. diameter,
and they generally
made one oscillation
in from 20 to 30 seconds,
through angles varying
from 360° to 6°. When
the velocity of the circumference
of the disk
was less than 6 in. per
second, the resistance
was sensibly proportional
to the velocity.

Beaufoy’s Experiments.—Towards the end of the 18th century
Colonel Mark Beaufoy (1764-1827) made an immense mass of
experiments on the resistance of bodies moved through water
(Nautical and Hydraulic Experiments, London, 1834). Of these the
only ones directly bearing on surface friction were some made in 1796
and 1798. Smooth painted planks were drawn through water and
the resistance measured. For two planks differing in area by 46 sq.
ft., at a velocity of 10 ft. per second, the difference of resistance,
measured on the difference of area, was 0.339 ℔ per square foot.
Also the resistance varied as the 1.949th power of the velocity.

§ 68. Froude’s Experiments.—The most important direct experiments
on fluid friction at ordinary velocities are those made by
William Froude (1810-1879) at Torquay. The method adopted in
these experiments was to tow a board in a still water canal, the
velocity and the resistance being registered by very ingenious recording
arrangements. The general arrangement of the apparatus is
shown in fig. 79. AA is the board the resistance of which is to be
determined. B is a cutwater giving a fine entrance to the plane
surfaces of the board. CC is a bar to which the board AA is attached,
and which is suspended by a parallel motion from a carriage running
on rails above the still water canal. G is a link by which the resistance
of the board is transmitted to a spiral spring H. A bar I
rigidly connects the other end of the spring to the carriage. The
dotted lines K, L indicate the position of a couple of levers by which
the extension of the spring is caused to move a pen M, which records
the extension on a greatly increased scale, by a line drawn on the
paper cylinder N. This cylinder revolves at a speed proportionate
to that of the carriage, its motion being obtained from the axle of the
carriage wheels. A second pen O, receiving jerks at every second
and a quarter from a clock P, records time on the paper cylinder.
The scale for the line of resistance is ascertained by stretching the
spiral spring by known weights. The boards used for the experiment
were 3⁄16 in. thick, 19 in. deep, and from 1 to 50 ft. in length, cutwater
included. A lead keel counteracted the buoyancy of the board.
The boards were covered with various substances, such as paint,
varnish, Hay’s composition, tinfoil, &c., so as to try the effect of
different degrees of roughness of surface. The results obtained by
Froude may be summarized as follows:—


	

	Fig. 79.


1. The friction per square foot of surface varies very greatly for
different surfaces, being generally greater as the sensible roughness
of the surface is greater. Thus, when the surface of the board was
covered as mentioned below, the resistance for boards 50 ft. long,
at 10 ft. per second, was—


	Tinfoil or varnish 	0.25 	℔ per 	sq. ft.

	Calico 	0.47 	” 	”

	Fine sand 	0.405 	” 	”

	Coarser sand 	0.488 	” 	”



2. The power of the velocity to which the friction is proportional
varies for different surfaces. Thus, with short boards 2 ft. long,

	 
For tinfoil the resistance varied as v2.16.

For other surfaces the resistance varied as v2.00.


 


With boards 50 ft. long,

	 
For varnish or tinfoil the resistance varied as v1.83.

For sand the resistance varied as v2.00.


 


3. The average resistance per square foot of surface was much
greater for short than for long boards; or, what is the same thing,
the resistance per square foot at the forward part of the board was
greater than the friction per square foot of portions more sternward.
Thus,


	  	Mean Resistance in

℔ per sq. ft.

	Varnished surface 	2 	ft. long 	0.41 

	  	50 	” 	0.25 

	Fine sand surface 	2 	” 	0.81 

	  	50 	” 	0.405



This remarkable result is explained thus by Froude: “The
portion of surface that goes first in the line of motion, in experiencing
resistance from the water, must in turn communicate motion to the
water, in the direction in which it is itself travelling. Consequently

the portion of surface which succeeds the first will be rubbing, not
against stationary water, but against water partially moving in its
own direction, and cannot therefore experience so much resistance
from it.”

§ 69. The following table gives a general statement of Froude’s
results. In all the experiments in this table, the boards had a fine
cutwater and a fine stern end or run, so that the resistance was
entirely due to the surface. The table gives the resistances per
square foot in pounds, at the standard speed of 600 feet per minute,
and the power of the speed to which the friction is proportional, so
that the resistance at other speeds is easily calculated.


	  	Length of Surface, or Distance from Cutwater, in feet.

	2 ft. 	8 ft. 	20 ft. 	50 ft.

	A 	B 	C 	A 	B 	C 	A 	B 	C 	A 	B 	C

	Varnish 	2.00 	.41 	.390 	1.85 	.325 	.264 	1.85 	.278 	.240 	1.83 	.250 	.226

	Paraffin 	.. 	.38 	.370 	1.94 	.314 	.260 	1.93 	.271 	.237 	.. 	.. 	..

	Tinfoil 	2.16 	.30 	.295 	1.99 	.278 	.263 	1.90 	.262 	.244 	1.83 	.246 	.232

	Calico 	1.93 	.87 	.725 	1.92 	.626 	.504 	1.89 	.531 	.447 	1.87 	.474 	.423

	Fine sand 	2.00 	.81 	.690 	2.00 	.583 	.450 	2.00 	.480 	.384 	2.06 	.405 	.337

	Medium sand 	2.00 	.90 	.730 	2.00 	.625 	.488 	2.00 	.534 	.465 	2.00 	.488 	.456

	Coarse sand 	2.00 	1.10 	.880 	2.00 	.714 	.520 	2.00 	.588 	.490 	.. 	.. 	..



Columns A give the power of the speed to which the resistance is
approximately proportional.

Columns B give the mean resistance per square foot of the whole
surface of a board of the lengths stated in the table.

Columns C give the resistance in pounds of a square foot of surface
at the distance sternward from the cutwater stated in the heading.

Although these experiments do not directly deal with surfaces of
greater length than 50 ft., they indicate what would be the resistances
of longer surfaces. For at 50 ft. the decrease of resistance for an
increase of length is so small that it will make no very great difference
in the estimate of the friction whether we suppose it to continue to
diminish at the same rate or not to diminish at all. For a varnished
surface the friction at 10 ft. per second diminishes from 0.41 to 0.32
℔ per square foot when the length is increased from 2 to 8 ft., but it
only diminishes from 0.278 to 0.250 ℔ per square foot for an increase
from 20 ft. to 50 ft.

If the decrease of friction sternwards is due to the generation of a
current accompanying the moving plane, there is not at first sight
any reason why the decrease should not be greater than that shown
by the experiments. The current accompanying the board might be
assumed to gain in volume and velocity sternwards, till the velocity
was nearly the same as that of the moving plane and the friction per
square foot nearly zero. That this does not happen appears to be due
to the mixing up of the current with the still water surrounding it.
Part of the water in contact with the board at any point, and receiving
energy of motion from it, passes afterwards to distant regions of
still water, and portions of still water are fed in towards the board
to take its place. In the forward part of the board more kinetic
energy is given to the current than is diffused into surrounding space,
and the current gains in velocity. At a greater distance back there is
an approximate balance between the energy communicated to the
water and that diffused. The velocity of the current accompanying
the board becomes constant or nearly constant, and the friction per
square foot is therefore nearly constant also.

§ 70. Friction of Rotating Disks.—A rotating disk is virtually a
surface of unlimited extent and it is convenient for experiments on
friction with different surfaces at different speeds. Experiments
carried out by Professor W. C. Unwin (Proc. Inst. Civ. Eng. lxxx.)
are useful both as illustrating the laws of fluid friction and as giving
data for calculating the resistance of the disks of turbines and
centrifugal pumps. Disks of 10, 15 and 20 in. diameter fixed on a
vertical shaft were rotated by a belt driven by an engine. They were
enclosed in a cistern of water between parallel top and bottom fixed
surfaces. The cistern was suspended by three fine wires. The friction
of the disk is equal to the tendency of the cistern to rotate, and this
was measured by balancing the cistern by a fine silk cord passing over
a pulley and carrying a scale pan in which weights could be placed.

If ω is an element of area on the disk moving with the velocity v,
the friction on this element is fωvn, where f and n are constant for
any given kind of surface. Let α be the angular velocity of rotation,
R the radius of the disk. Consider a ring of the surface between r and
r + dr. Its area is 2πrdr, its velocity αr and the friction of this ring
is f2πrdrαnrn. The moment of the friction about the axis of rotation
is 2παnfrn+2 dr, and the total moment of friction for the two sides of
the disk is

M = 4παnf ∫R0 rn+2 dr = {4παn/(n + 3) } fRn+3.

If N is the number of revolutions per sec.,

M = {2n+2 πn+1 Nn/(n + 3) } fRn+3,

and the work expended in rotating the disk is

Mα = {2n+3 πn+2 Nn+1/(n + 3) } fRn+3 foot ℔ per sec.

The experiments give directly the values of M for the disks corresponding
to any speed N. From these the values of f and n can be
deduced, f being the friction per square foot at unit velocity. For
comparison with Froude’s results it is convenient to calculate the
resistance at 10 ft. per second, which is F = f10n.

The disks were rotated in chambers 22 in. diameter and 3, 6 and
12 in. deep. In all cases the friction of the disks increased a little
as the chamber was made larger. This is probably due to the stilling
of the eddies against the surface of the chamber and the feeding back
of the stilled water to the disk. Hence the friction depends not only
on the surface of the disk but to some extent on the surface of the
chamber in which it rotates. If the surface of the chamber is made
rougher by covering with coarse sand there is
also an increase of resistance.

For the smoother surfaces the friction varied
as the 1.85th power of the velocity. For the
rougher surfaces the power of the velocity to
which the resistance was proportional varied
from 1.9 to 2.1. This is in agreement with
Froude’s results.

Experiments with a bright brass disk showed
that the friction decreased with increase of
temperature. The diminution between 41°
and 130° F. amounted to 18%. In the general
equation M = cNn for any given disk,

ct = 0.1328 (1 − 0.0021t),

where ct is the value of c for a bright brass
disk 0.85 ft. in diameter at a temperature t° F.

The disks used were either polished or made rougher by varnish
or by varnish and sand. The following table gives a comparison of
the results obtained with the disks and Froude’s results on planks
50 ft. long. The values given are the resistances per square foot at
10 ft. per sec.


	Froude’s Experiments. 	Disk Experiments.

	Tinfoil surface 	0.232 	Bright brass 	0.202 to 0.229

	Varnish 	0.226 	Varnish 	0.220 to 0.233

	Fine sand 	0.337 	Fine sand 	0.339

	Medium sand 	0.456 	Very coarse sand 	0.587 to 0.715



VIII. STEADY FLOW OF WATER IN PIPES OF
UNIFORM SECTION.

§ 71. The ordinary theory of the flow of water in pipes, on which
all practical formulae are based, assumes that the variation of velocity
at different points of any cross section may be neglected. The
water is considered as moving in plane layers, which are driven
through the pipe against the frictional resistance, by the difference
of pressure at or elevation of the ends of the pipe. If the motion
is steady the velocity at each cross section remains the same from
moment to moment, and if the cross sectional area is constant the
velocity at all sections must be the same. Hence the motion is
uniform. The most important resistance to the motion of the water
is the surface friction of the pipe, and it is convenient to estimate
this independently of some smaller resistances which will be accounted
for presently.


	

	Fig. 80.


In any portion of a uniform pipe, excluding for the present the
ends of the pipe, the water enters and leaves at the same velocity.
For that portion therefore
the work of the
external forces and of
the surface friction
must be equal. Let
fig. 80 represent a very
short portion of the
pipe, of length dl, between
cross sections at
z and z + dz ft. above
any horizontal datum
line xx, the pressures at
the cross sections being
p and p + dp ℔ per
square foot. Further,
let Q be the volume of
flow or discharge of the pipe per second, Ω the area of a normal
cross section, and χ the perimeter of the pipe. The Q cubic feet,
which flow through the space considered per second, weigh GQ ℔,
and fall through a height −dz ft. The work done by gravity is then

−GQ dz;

a positive quantity if dz is negative, and vice versa. The resultant
pressure parallel to the axis of the pipe is p − (p + dp) = −dp ℔ per
square foot of the cross section. The work of this pressure on the
volume Q is

−Q dp.

The only remaining force doing work on the system is the friction
against the surface of the pipe. The area of that surface is χdl.

The work expended in overcoming the frictional resistance per
second is (see § 66, eq. 3)

−ζGχ dl v3/2g,

or, since Q = Ωv,

−ζG (χ/Ω) Q (v2/2g) dl;



the negative sign being taken because the work is done against a
resistance. Adding all these portions of work, and equating the
result to zero, since the motion is uniform,—

−GQ dz − Q dp − ζG (χ/Ω) Q (v2/2g) dl = 0.

Dividing by GQ,

dz + dp/G + ζ (χ/Ω) (v2/2g) dl = 0.

Integrating,

z + p/G + ζ (χ/Ω) (v2/2g) l = constant.

(1)

§ 72. Let A and B (fig. 81) be any two sections of the pipe for
which p, z, l have the values p1, z1, l1, and p2, z2, l2, respectively.
Then

z1 + p1/G + ζ (χ/Ω) (v2/2g) l1 = z2 + p2/G + ζ (χ/Ω) (v2/2g) l2;

or, if l2 − l1 = L, rearranging the terms,

ζv2/2g = (1/L) {(z1 + p1/G) − (z2 + p2/G)} Ω/χ.

(2)


	

	Fig. 81.


Suppose pressure columns introduced at A and B. The water will
rise in those columns to the heights p1/G and p2/G due to the
pressures p1 and p2 at A and B. Hence (z1 + p1/G) − (z2 + p2/G) is
the quantity represented in the figure by DE, the fall of level of
the pressure columns, or virtual fall of the pipe. If there were no
friction in the pipe, then by Bernoulli’s equation there would be no
fall of level of the pressure columns, the velocity being the same at
A and B. Hence DE or h is the head lost in friction in the distance
AB. The quantity DE/AB = h/L is termed the virtual slope of
the pipe or virtual fall per foot of length. It is sometimes termed
very conveniently the relative fall. It will be denoted by the
symbol i.

The quantity Ω/χ which appears in many hydraulic equations is
called the hydraulic mean radius of the pipe. It will be denoted
by m.

Introducing these values,

ζv2/2g = mh/L = mi.


(3)

For pipes of circular section, and diameter d,

m = Ω/χ = 1⁄4πd2/πd = 1⁄4d.

Then

ζv2/2g = 1⁄4dh/L = 1⁄4 di;

(4)

or

h = ζ (4L/d) (v2/2g);

(4a)

which shows that the head lost in friction is proportional to the
head due to the velocity, and is found by multiplying that head by
the coefficient 4ζL/d. It is assumed above that the atmospheric
pressure at C and D is the same, and this is usually nearly the case.
But if C and D are at greatly different levels the excess of barometric
pressure at C, in feet of water, must be added to p2/G.

§ 73. Hydraulic Gradient or Line of Virtual Slope.—Join CD.
Since the head lost in friction is proportional to L, any intermediate
pressure column between A and B will have its free surface on the
line CD, and the vertical distance between CD and the pipe at any
point measures the pressure, exclusive of atmospheric pressure, in
the pipe at that point. If the pipe were laid along the line CD
instead of AB, the water would flow at the same velocity by gravity
without any change of pressure from section to section. Hence CD
is termed the virtual slope or hydraulic gradient of the pipe. It is
the line of free surface level for each point of the pipe.

If an ordinary pipe, connecting reservoirs open to the air, rises at
any joint above the line of virtual slope, the pressure at that point
is less than the atmospheric pressure transmitted through the pipe.
At such a point there is a liability that air may be disengaged from
the water, and the flow stopped or impeded by the accumulation of
air. If the pipe rises more than 34 ft. above the line of virtual slope,
the pressure is negative. But as this is impossible, the continuity
of the flow will be broken.

If the pipe is not straight, the line of virtual slope becomes a
curved line, but since in actual pipes the vertical alterations of level
are generally small, compared with the length of the pipe, distances
measured along the pipe are sensibly proportional to distances
measured along the horizontal projection of the pipe. Hence the
line of hydraulic gradient may be taken to be a straight line without
error of practical importance.


	

	Fig. 82.


§ 74. Case of a Uniform Pipe connecting two Reservoirs, when all the
Resistances are taken into account.—Let h (fig. 82) be the difference
of level of the reservoirs, and v the velocity, in a pipe of length L
and diameter d. The whole work done per second is virtually the
removal of Q cub. ft. of water from the surface of the upper
reservoir to the surface of the lower reservoir, that is GQh foot-pounds.
This is expended in three ways. (1) The head v2/2g, corresponding
to an expenditure of GQv2/2g foot-pounds of work, is
employed in giving energy of motion to the water. This is ultimately
wasted in eddying motions in the lower reservoir. (2) A
portion of head, which experience shows may be expressed in the
form ζ0v2/2g, corresponding to an expenditure of GQζ0v2/2g foot-pounds
of work, is employed in overcoming the resistance at the
entrance to the pipe. (3) As already shown the head expended in
overcoming the surface friction of the pipe is ζ(4L/d) (v2/2g) corresponding
to GQζ (4L/d) (v2/2g) foot-pounds of work. Hence

GQh = GQv2/2g + GQζ0v2/2g + GQζ·4L·v2/d·2g;

	 
h = (1 + ζ0 + ζ·4L/d) v2/2g.

v = 8.025 √ [hd / {(1 + ζ0)d + 4ζL} ].


 


(5)

If the pipe is bell-mouthed, ζ0 is about = .08. If the entrance to
the pipe is cylindrical, ζ0 = 0.505. Hence 1 + ζ0 = 1.08 to 1.505.
In general this is so small compared with ζ4L/d that, for practical
calculations, it may be neglected; that is, the losses of head other
than the loss in surface friction are left out of the reckoning. It
is only in short pipes and at high velocities that it is necessary to
take account of the first two terms in the bracket, as well as the
third. For instance, in pipes for the supply of turbines, v is usually
limited to 2 ft. per second, and the pipe is bellmouthed. Then
1.08v2/2g = 0.067 ft. In pipes for towns’ supply v may range from
2 to 41⁄2 ft. per second, and then 1.5v2/2g = 0.1 to 0.5 ft. In either
case this amount of head is small compared with the whole virtual
fall in the cases which most commonly occur.

When d and v or d and h are given, the equations above are solved
quite simply. When v and h are given and d is required, it is better
to proceed by approximation. Find an approximate value of d by
assuming a probable value for ζ as mentioned below. Then from
that value of d find a corrected value for ζ and repeat the calculation.

The equation above may be put in the form

h = (4ζ/d) [{ (1 + ζ0) d/4ζ} + L] v2/2g;

(6)

from which it is clear that the head expended at the mouthpiece is
equivalent to that of a length

(1 + ζ0) d/4ζ

of the pipe. Putting 1 + ζ0 = 1.505 and ζ = 0.01, the length of pipe
equivalent to the mouthpiece is 37.6d nearly. This may be added
to the actual length of the pipe to allow for mouthpiece resistance
in approximate calculations.

§ 75. Coefficient of Friction for Pipes discharging Water.—From the
average of a large number of experiments, the value of ζ for ordinary
iron pipes is

ζ = 0.007567.

(7)

But practical experience shows that no single value can be taken
applicable to very different cases. The earlier hydraulicians occupied
themselves chiefly with the dependence of ζ on the velocity. Having
regard to the difference of the law of resistance at very low and
at ordinary velocities, they assumed that ζ might be expressed in the
form

ζ = a + β/v.

The following are the best numerical values obtained for ζ so expressed:—


	  	α 	β

	R. de Prony (from 51 experiments) 	0.006836 	0.001116

	J. F. d’Aubuisson de Voisins 	0.00673 	0.001211

	J. A. Eytelwein 	0.005493 	0.00143



Weisbach proposed the formula

4ζ = α + β/√v = 0.003598 + 0.004289/√v.

(8)



§ 76. Darcy’s Experiments on Friction in Pipes.—All previous
experiments on the resistance of pipes were superseded by the remarkable
researches carried out by H. P. G. Darcy (1803-1858), the
Inspector-General of the Paris water works. His experiments were
carried out on a scale, under a variation of conditions, and with a
degree of accuracy which leaves little to be desired, and the results
obtained are of very great practical importance. These results may
be stated thus:—

1. For new and clean pipes the friction varies considerably with
the nature and polish of the surface of the pipe. For clean cast
iron it is about 11⁄2 times as great as for cast iron covered with pitch.

2. The nature of the surface has less influence when the pipes
are old and incrusted with deposits, due to the action of the water.
Thus old and incrusted pipes give twice as great a frictional resistance
as new and clean pipes. Darcy’s coefficients were chiefly
determined from experiments on new pipes. He doubles these coefficients
for old and incrusted pipes, in accordance with the results
of a very limited number of experiments on pipes containing incrustations
and deposits.

3. The coefficient of friction may be expressed in the form
ζ = α + β/v; but in pipes which have been some time in use it is
sufficiently accurate to take ζ = α1 simply, where α1 depends on the
diameter of the pipe alone, but α and β on the other hand depend
both on the diameter of the pipe and the nature of its surface. The
following are the values of the constants.

For pipes which have been some time in use, neglecting the term
depending on the velocity;

ζ = α (1 + β/d).

(9)


	  	α 	β

	For drawn wrought-iron or smooth cast-iron pipes 	.004973 	.084

	For pipes altered by light incrustations 	.00996 	.084



These coefficients may be put in the following very simple form,
without sensibly altering their value:—


	For clean pipes 	ζ = .005 (1 + 1/12d)

	For slightly incrusted pipes 	ζ = .01 (1 + 1/12d)



(9a)

Darcy’s Value of the Coefficient of Friction ζ for Velocities not less
than 4 in. per second.


	Diameter

of Pipe

in Inches. 	ζ 	Diameter

of Pipe

in Inches. 	ζ

	New

Pipes. 	Incrusted

Pipes. 	New

Pipes. 	Incrusted

Pipes.

	2 	0.00750 	0.01500 	18 	.00528 	.01056

	3 	.00667 	.01333 	21 	.00524 	.01048

	4 	.00625 	.01250 	24 	.00521 	.01042

	5 	.00600 	.01200 	27 	.00519 	.01037

	6 	.00583 	.01167 	30 	.00517 	.01033

	7 	.00571 	.01143 	36 	.00514 	.01028

	8 	.00563 	.01125 	42 	.00512 	.01024

	9 	.00556 	.01111 	54 	.00509 	.01019

	15 	.00533 	.01067 	  	  	 



These values of ζ are, however, not exact for widely differing
velocities. To embrace all cases Darcy proposed the expression

ζ = (α + α1/d) + (β + β1/d2) / v;

(10)

which is a modification of Coulomb’s, including terms expressing the
influence of the diameter and of the velocity. For clean pipes Darcy
found these values

	 
α    = .004346

α1 = .0003992

β     = .0010182

β1  = .000005205.


 


It has become not uncommon to calculate the discharge of pipes
by the formula of E. Ganguillet and W. R. Kutter, which will be
discussed under the head of channels. For the value of c in the
relation v = c √(mi), Ganguillet and Kutter take


	c = 	41.6 + 1.811/n + .00281/i


	1 + [ (41.6 + .00281/i) (n/√m) ]


where n is a coefficient depending only on the roughness of the pipe.
For pipes uncoated as ordinarily laid n = 0.013. The formula is very
cumbrous, its form is not rationally justifiable and it is not at all
clear that it gives more accurate values of the discharge than simpler
formulae.

§ 77. Later Investigations on Flow in Pipes.—The foregoing statement
gives the theory of flow in pipes so far as it can be put in a
simple rational form. But the conditions of flow are really more
complicated than can be expressed in any rational form. Taking
even selected experiments the values of the empirical coefficient ζ
range from 0.16 to 0.0028 in different cases. Hence means of discriminating
the probable value of ζ are necessary in using the equations
for practical purposes. To a certain extent the knowledge that
ζ decreases with the size of the pipe and increases very much with
the roughness of its surface is a guide, and Darcy’s method of dealing
with these causes of variation is very helpful. But a further
difficulty arises from the discordance of the results of different experiments.
For instance F. P. Stearns and J. M. Gale both experimented
on clean asphalted cast-iron pipes, 4 ft. in diameter. According
to one set of gaugings ζ = .0051, and according to the other
ζ = .0031. It is impossible in such cases not to suspect some error in
the observations or some difference in the condition of the pipes not
noticed by the observers.

It is not likely that any formula can be found which will give
exactly the discharge of any given pipe. For one of the chief factors
in any such formula must express the exact roughness of the pipe
surface, and there is no scientific measure of roughness. The most
that can be done is to limit the choice of the coefficient for a pipe
within certain comparatively narrow limits. The experiments on
fluid friction show that the power of the velocity to which the
resistance is proportional is not exactly the square. Also in determining
the form of his equation for ζ Darcy used only eight out of his
seventeen series of experiments, and there is reason to think that some
of these were exceptional. Barré de Saint-Venant was the first to
propose a formula with two constants,

dh/4l = mVn,

where m and n are experimental constants. If this is written in the
form

log m + n log v = log (dh/4l),

we have, as Saint-Venant pointed out, the equation to a straight
line, of which m is the ordinate at the origin and n the ratio of the
slope. If a series of experimental values are plotted logarithmically
the determination of the constants is reduced to finding the straight
line which most nearly passes through the plotted points. Saint-Venant
found for n the value of 1.71. In a memoir on the influence
of temperature on the movement of water in pipes (Berlin, 1854) by
G. H. L. Hagen (1797-1884) another modification of the Saint-Venant
formula was given. This is h/l = mvn/dx, which involves three experimental
coefficients. Hagen found n = 1.75; x = 1.25; and m
was then nearly independent of variations of v and d. But the range
of cases examined was small. In a remarkable paper in the Trans.
Roy. Soc., 1883, Professor Osborne Reynolds made much clearer the
change from regular stream line motion at low velocities to the
eddying motion, which occurs in almost all the cases with which the
engineer has to deal. Partly by reasoning, partly by induction
from the form of logarithmically plotted curves of experimental
results, he arrived at the general equation h/l = c (vn/d3−n) P2−n,
where n = l for low velocities and n = 1.7 to 2 for ordinary velocities.
P is a function of the temperature. Neglecting variations of temperature
Reynold’s formula is identical with Hagen’s if x = 3 − n. For
practical purposes Hagen’s form is the more convenient.

Values of Index of Velocity.


	Surface of Pipe. 	Authority. 	Diameter

of Pipe

in Metres. 	Values of n.

	Tin plate 	Bossut 	.036 	1.697 	1.72

	.054 	1.730

	Wrought iron (gas pipe) 	Hamilton Smith 	.0159 	1.756 	1.75

	.0267 	1.770

	Lead 	Darcy 	.014 	1.866 	1.77

	.027 	1.755

	.041 	1.760

	Clean brass 	Mair 	.036 	1.795 	1.795

	Asphalted 	Hamilton Smith 	.0266 	1.760 	1.85

	Lampe. 	.4185 	1.850

	W. W. Bonn 	.306 	1.582

	Stearns 	1.219 	1.880

	Riveted wrought iron 	Hamilton Smith 	.2776 	1.804 	1.87

	.3219 	1.892

	.3749 	1.852

	Wrought iron (gas pipe) 	Darcy 	.0122 	1.900 	1.87

	.0266 	1.899

	.0395 	1.838

	New cast iron 	Darcy 	.0819 	1.950 	1.95

	.137 	1.923

	.188 	1.957

	.50 	1.950

	Cleaned cast iron 	Darcy 	.0364 	1.835 	2.00

	.0801 	2.000

	.2447 	2.000

	.397 	2.07

	Incrusted cast iron 	Darcy 	.0359 	1.980 	2.00

	.0795 	1.990

	.2432 	1.990






	

	Fig. 83.


In 1886, Professor W. C. Unwin plotted logarithmically all the
most trustworthy experiments on flow in pipes then available.5
Fig. 83 gives one such plotting. The results of measuring the slopes
of the lines drawn through the plotted points are given in the
table.

It will be seen that the values of the index n range from 1.72 for
the smoothest and cleanest surface, to 2.00 for the roughest. The
numbers after the brackets are rounded off numbers.

The value of n having been thus determined, values of m/dx were
next found and averaged for each pipe. These were again plotted
logarithmically in order to find a value for x. The lines were not
very regular, but in all cases the slope was greater than 1 to 1, so
that the value of x must be greater than unity. The following table
gives the results and a comparison of the value of x and Reynolds’s
value 3 − n.


	Kind of Pipe. 	n 	3 − n 	x

	Tin plate 	1.72 	1.28 	1.100

	Wrought iron (Smith) 	1.75 	1.25 	1.210

	Asphalted pipes 	1.85 	1.15 	1.127

	Wrought iron (Darcy) 	1.87 	1.13 	1.680

	Riveted wrought iron 	1.87 	1.13 	1.390

	New cast iron 	1.95 	1.05 	1.168

	Cleaned cast iron 	2.00 	1.00 	1.168

	Incrusted cast iron 	2.00 	1.00 	1.160



With the exception of the anomalous values for Darcy’s wrought-iron
pipes, there is no great discrepancy between the values of x and
3 − n, but there is no appearance of relation in the two quantities.
For the present it appears preferable to assume that x is independent
of n.

It is now possible to obtain values of the third constant m, using
the values found for n and x. The following table gives the results,
the values of m being for metric measures.

Here, considering the great range of diameters and velocities in
the experiments, the constancy of m is very satisfactorily close.
The asphalted pipes give rather variable values. But, as some of
these were new and some old, the variation is, perhaps, not surprising.
The incrusted pipes give a value of m quite double that for new pipes
but that is perfectly consistent with what is known of fluid friction
in other cases.


	Kind of Pipe. 	Diameter

in

Metres. 	Value of

m. 	Mean

Value

of m. 	Authority.

	Tin plate 	0.036 	.01697 	.01686 	Bossut

	0.054 	.01676

	Wrought iron 	0.016 	.01302 	.01310 	Hamilton Smith

	0.027 	.01319

	Asphalted pipes 	0.027 	.01749 	.01831 	Hamilton Smith

	0.306 	.02058 	W. W. Bonn

	0.306 	.02107 	W. W. Bonn

	0.419 	.01650 	Lampe

	1.219 	.01317 	Stearns

	1.219 	.02107 	Gale

	Riveted wrought iron 	0.278 	.01370 	.01403 	Hamilton Smith

	0.322 	.01440

	0.375 	.01390

	0.432 	.01368

	0.657 	.01448

	New cast iron 	0.082 	.01725 	.01658 	Darcy

	0.137 	.01427

	0.188 	.01734

	0.500 	.01745

	Cleaned cast iron 	0.080 	.01979 	.01994 	Darcy

	0.245 	.02091

	0.297 	.01913

	Incrusted cast iron 	0.036 	.03693 	.03643 	Darcy

	0.080 	.03530

	0.243 	.03706





General Mean Values of Constants.

The general formula (Hagen’s)—h/l = mvn/dx·2g—can therefore be
taken to fit the results with convenient closeness, if the following
mean values of the coefficients are taken, the unit being a metre:—


	Kind of Pipe. 	m 	x 	n

	Tin plate 	.0169 	1.10  	1.72

	Wrought iron 	.0131 	1.21  	1.75

	Asphalted iron 	.0183 	1.127 	1.85

	Riveted wrought iron 	.0140 	1.390 	1.87

	New cast iron 	.0166 	1.168 	1.95

	Cleaned cast iron 	.0199 	1.168 	2.0 

	Incrusted cast iron 	.0364 	1.160 	2.0 



The variation of each of these coefficients is within a comparatively
narrow range, and the selection of the proper coefficient for any given
case presents no difficulty, if the character of the surface of the pipe
is known.

It only remains to give the values of these coefficients when the
quantities are expressed in English feet. For English measures the
following are the values of the coefficients:—


	Kind of Pipe. 	m 	x 	n

	Tin plate 	.0265 	1.10  	1.72

	Wrought iron 	.0226 	1.21  	1.75

	Asphalted iron 	.0254 	1.127 	1.85

	Riveted wrought iron 	.0260 	1.390 	1.87

	New cast iron 	.0215 	1.168 	1.95

	Cleaned cast iron 	.0243 	1.168 	2.0 

	Incrusted cast iron 	.0440 	1.160 	2.0 



§ 78. Distribution of Velocity in the Cross Section of a Pipe.—Darcy
made experiments with a Pitot tube in 1850 on the velocity at
different points in the cross section of a pipe. He deduced the
relation

V − v = 11.3 (r3/2/R) √i,

where V is the velocity at the centre and v the velocity at radius r in
a pipe of radius R with a hydraulic gradient i. Later Bazin repeated
the experiments and extended them (Mém. de l’Académie des Sciences,
xxxii. No. 6). The most important result was the ratio of mean to
central velocity. Let b = Ri/U2, where U is the mean velocity in the
pipe; then V/U = 1 + 9.03 √b. A very useful result for practical
purposes is that at 0.74 of the radius of the pipe the velocity is equal
to the mean velocity. Fig. 84 gives the velocities at different radii
as determined by Bazin.


	

	Fig. 84.


§ 79. Influence of Temperature on the Flow through Pipes.—Very
careful experiments on the flow through a pipe 0.1236 ft. in diameter
and 25 ft. long, with water at different temperatures, have been
made by J. G. Mair (Proc. Inst. Civ. Eng. lxxxiv.). The loss of head
was measured from a point 1 ft. from the inlet, so that the loss at
entry was eliminated. The 11⁄2 in. pipe was made smooth inside and
to gauge, by drawing a mandril through it. Plotting the results
logarithmically, it was found that the resistance for all temperatures
varied very exactly as v1.795, the index being less than 2 as in
other experiments with very smooth surfaces. Taking the ordinary
equation of flow h = ζ (4L/D) (v2/2g), then for heads varying from 1 ft.
to nearly 4 ft., and velocities in the pipe varying from 4 ft. to 9 ft. per
second, the values of ζ were as follows:—


	Temp. F. 	ζ 	Temp. F. 	ζ

	57 	.0044 to .0052 	100 	.0039 to .0042

	70 	.0042 to .0045 	110 	.0037 to .0041

	80 	.0041 to .0045 	120 	.0037 to .0041

	90 	.0040 to .0045 	130 	.0035 to .0039

	  	  	160 	.0035 to .0038



This shows a marked decrease of resistance as the temperature
rises. If Professor Osborne Reynolds’s equation is assumed
h = mLVn/d3−n, and n is taken 1.795, then values of m at each
temperature are practically constant—


	Temp. F. 	m. 	Temp. F. 	m.

	57 	0.000276 	100 	0.000244

	70 	0.000263 	110 	0.000235

	80 	0.000257 	120 	0.000229

	90 	0.000250 	130 	0.000225

	  	  	160 	0.000206



where again a regular decrease of the coefficient occurs as the
temperature rises. In experiments on the friction of disks at
different temperatures Professor W. C. Unwin found that the resistance
was proportional to constant × (1 − 0.0021t) and the values
of m given above are expressed almost exactly by the relation

m = 0.000311 (1 − 0.00215 t).

In tank experiments on ship models for small ordinary variations
of temperature, it is usual to allow a decrease of 3% of resistance for
10° F. increase of temperature.

§ 80. Influence of Deposits in Pipes on the Discharge. Scraping
Water Mains.—The influence of the condition of the surface of a pipe
on the friction is shown by various facts known to the engineers of
waterworks. In pipes which convey certain kinds of water, oxidation
proceeds rapidly and the discharge is considerably diminished. A
main laid at Torquay in 1858, 14 m. in length, consists of 10-in., 9-in.
and 8-in. pipes. It was not protected from corrosion by any coating.
But it was found to the surprise of the engineer that in eight years
the discharge had diminished to 51% of the original discharge.
J. G. Appold suggested an apparatus for scraping the interior of the
pipe, and this was constructed and used under the direction of
William Froude (see “Incrustation of Iron Pipes,” by W. Ingham,
Proc. Inst. Mech. Eng., 1899). It was found that by scraping the
interior of the pipe the discharge was increased 56%. The scraping
requires to be repeated at intervals. After each scraping the discharge
diminishes rather rapidly to 10% and afterwards more
slowly, the diminution in a year being about 25%.

Fig. 85 shows a scraper for water mains, similar to Appold’s but
modified in details, as constructed by the Glenfield Company, at
Kilmarnock. A is a longitudinal section of the pipe, showing the
scraper in place; B is an end view of the plungers, and C, D sections
of the boxes placed at intervals on the main for introducing or withdrawing
the scraper. The apparatus consists of two plungers,
packed with leather so as to fit the main pretty closely. On the
spindle of these plungers are fixed eight steel scraping blades, with
curved scraping edges fitting the surface of the main. The apparatus
is placed in the main by removing the cover from one of the boxes
shown at C, D. The cover is then replaced, water pressure is admitted
behind the plungers, and the apparatus driven through the
main. At Lancaster after twice scraping the discharge was increased
561⁄2%, at Oswestry 541⁄2%. The increased discharge is due to the
diminution of the friction of the pipe by removing the roughnesses
due to oxidation. The scraper can be easily followed when the mains
are about 3 ft. deep by the noise it makes. The average speed of the
scraper at Torquay is 21⁄3 m. per hour. At Torquay 49% of the
deposit is iron rust, the rest being silica, lime and organic matter.


	

	Fig. 85. Scale 1⁄25.


In the opinion of some engineers it is inadvisable to use the
scraper. The incrustation is only temporarily removed, and if the
use of the scraper is continued the life of the pipe is reduced. The
only treatment effective in preventing or retarding the incrustation
due to corrosion is to coat the pipes when hot with a smooth and
perfect layer of pitch. With certain waters such as those derived
from the chalk the incrustation is of a different character, consisting
of nearly pure calcium carbonate. A deposit of another character
which has led to trouble in some mains is a black slime containing a
good deal of iron not derived from the pipes. It appears to be an

organic growth. Filtration of the water appears to prevent the
growth of the slime, and its temporary removal may be effected by
a kind of brush scraper devised by G. F. Deacon (see “Deposits in
Pipes,” by Professor J. C. Campbell Brown, Proc. Inst. Civ. Eng.,
1903-1904).

§ 81. Flow of Water through Fire Hose.—The hose pipes used for
fire purposes are of very varied character, and the roughness of the
surface varies. Very careful experiments have been made by J. R.
Freeman (Am. Soc. Civ. Eng. xxi., 1889). It was noted that under
pressure the diameter of the hose increased sufficiently to have a
marked influence on the discharge. In reducing the results the true
diameter has been taken. Let v = mean velocity in ft. per sec.;
r = hydraulic mean radius or one-fourth the diameter in feet; i =
hydraulic gradient. Then v = n √(ri).


	  	Diameter

in

Inches. 	Gallons

(United

States)

per min. 	i 	v 	n

	Solid rubber hose 	2.65 	215 	.1863 	12.50 	123.3

	” 	344 	.4714 	20.00 	124.0

	Woven cotton, rubber lined 	2.47 	200 	.2464 	13.40 	119.1

	” 	299 	.5269 	20.00 	121.5

	Woven cotton, rubber lined 	2.49 	200 	.2427 	13.20 	117.7

	” 	319 	.5708 	21.00 	122.1

	Knit cotton, rubber lined 	2.68 	132 	.0809 	7.50 	111.6

	” 	299 	.3931 	17.00 	114.8

	Knit cotton, rubber lined 	2.69 	204 	.2357 	11.50 	100.1

	” 	319 	.5165 	18.00 	105.8

	Woven cotton, rubber lined 	2.12 	154 	.3448 	14.00 	113.4

	” 	240 	.7673 	21.81 	118.4

	Woven cotton, rubber lined 	2.53 	 54.8 	.0261 	 3.50 	 94.3

	” 	298 	.8264 	19.00 	 91.0

	Unlined linen hose 	2.60 	 57.9 	.0414 	 3.50 	 73.9

	” 	331 	1.1624 	20.00 	 79.6



§ 82. Reduction of a Long Pipe of Varying Diameter to an Equivalent
Pipe of Uniform Diameter. Dupuit’s Equation.—Water mains for
the supply of towns often consist of a series of lengths, the diameter
being the same for each length, but differing from length to length.
In approximate calculations of the head lost in such mains, it is
generally accurate enough to neglect the smaller losses of head
and to have regard to the pipe friction only, and then the calculations
may be facilitated by reducing the main to a main of uniform
diameter, in which there would be the same loss of head. Such a
uniform main will be termed an equivalent main.


	

	Fig. 86.


In fig. 86 let A be the main of variable diameter, and B the equivalent
uniform main. In the given main of variable diameter A, let


	l1, l2 	be the lengths,

	d1, d2 	  the diameters,

	v1, v2 	  the velocities,

	i1, i2 	  the slopes,



for the successive portions, and let l, d, v and i be corresponding
quantities for the equivalent uniform main B. The total loss of
head in A due to friction is

	 
h = i1l1 + i2l2 + ...

= ζ (v12 · 4l1/2gd1) + ζ (v22 · 4l2/2gd2) + ...


 


and in the uniform main

il = ζ (v2 · 4l/2gd).

If the mains are equivalent, as defined above,

ζ (v2 · 4l/2gd) = ζ (v12 · 4l1/2gd1) + ζ (v22 · 4l2/2gd2) + ...

But, since the discharge is the same for all portions,

	 
1⁄4πd2v = 1⁄4πd12v1 = 1⁄4πd22v2 = ...

v1 = vd2/d12; v2 = vd2/d22 ...


 


Also suppose that ζ may be treated as constant for all the pipes.
Then

	 
l/d = (d4/d14) (l1/d1) + (d4/d24) (l2/d2) + ...

l = (d5/d15) l1 + (d5/d25) l2 + ...


 


which gives the length of the equivalent uniform main which would
have the same total loss of head for any given discharge.


	

	Fig. 87.


§ 83. Other Losses of Head in Pipes.—Most of the losses of head in
pipes, other than that due to surface friction against the pipe, are due
to abrupt changes in the velocity of the stream producing eddies.
The kinetic energy of these is deducted from the general energy of
translation, and practically wasted.

Sudden Enlargement of Section.—Suppose a pipe enlarges in section
from an area ω0 to an area ω1 (fig.
87); then

v1/v0 = ω0/ω1;

or, if the section is circular,

v1/v0 = (d0/d1)2.

The head lost at the abrupt change
of velocity has already been
shown to be the head due to the
relative velocity of the two parts
of the stream. Hence head lost

ɧe = (v0 − v1)2/2g = (ω1/ω0 − 1)2 v12/2g = {(d1/d0)2 − 1}2 v12/2g

or

ɧe = ζev12/2g,


(1)

if ζe is put for the expression in brackets.


	ω1/ω0 = 	1.1 	1.2 	1.5 	1.7 	1.8 	1.9 	2.0 	2.5 	3.0 	3.5 	4.0 	5.0 	6.0 	7.0 	8.0

	d1/d0 = 	1.05 	1.10 	1.22 	1.30 	1.34 	1.38 	1.41 	1.58 	1.73 	1.87 	2.00 	2.24 	2.45 	2.65 	2.83

	ζe = 	.01 	.04 	.25 	.49 	.64 	.81 	1.00 	2.25 	4.00 	6.25 	9.00 	16.00 	25.00 	36.0 	49.0




	
	

	Fig. 88.
	Fig. 89.


Abrupt Contraction of Section.—When water passes from a larger
to a smaller section, as in figs. 88, 89, a contraction is formed, and
the contracted stream abruptly expands to fill the section of the pipe.
Let ω be the section and v the velocity of the stream at bb. At aa
the section will be ccω, and the velocity (ω/ccω) v = v/c1, where cc is
the coefficient of contraction. Then the head lost is

ɧm = (v/cc − v)2 / 2g = (1/cc − 1)2 v2/2g;

and, if cc is taken 0.64,

ɧm = 0.316 v2/2g.

(2)

The value of the coefficient of contraction for this case is, however,
not well ascertained, and the result is somewhat modified by friction.
For water entering a cylindrical, not bell-mouthed, pipe from a
reservoir of indefinitely large size, experiment gives

ɧa = 0.505 v2/2g.

(3)

If there is a diaphragm at the mouth of the pipe as in fig. 89, let ω1
be the area of this orifice. Then the area of the contracted stream
is ccω1, and the head lost is

	 
ɧc = {(ω/ccω1) − 1}2 v2/2g

= ζcv2 / 2g


 


(4)

if ζ, is put for {(ω/ccω1) − 1}2. Weisbach has found experimentally
the following values of the coefficient, when the stream approaching
the orifice was considerably larger than the orifice:—


	ω1/ω = 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1.0

	cc = 	.616 	.614 	.612 	.610 	.617 	.605 	.603 	.601 	.598 	.596

	ζc = 	231.7 	50.99 	19.78 	9.612 	5.256 	3.077 	1.876 	1.169 	0.734 	0.480




	

	Fig. 90.


When a diaphragm was placed in a tube of uniform section (fig. 90)
the following values were obtained, ω1 being the area of the orifice
and ω that of the pipe:—


	ω1/ω = 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1.0

	ce = 	.624 	.632 	.643 	.659 	.681 	.712 	.755 	.813 	.892 	1.00

	ξc = 	225.9 	47.77 	30.83 	7.801 	1.753 	1.796 	.797 	.290 	.060 	.000





Elbows.—Weisbach considers the loss of head at elbows (fig. 91)
to be due to a contraction formed by the stream. From experiments
with a pipe 11⁄4 in. diameter, he found the loss of head

ɧe = ζεv2 / 2g;

(5)

ζe = 0.9457 sin2 1⁄2φ + 2.047 sin4 1⁄2φ.


	φ = 	20° 	40° 	60° 	80° 	90° 	100° 	110° 	120° 	130° 	140°

	ζε = 	0.046 	0.139 	0.364 	0.740 	0.984 	1.260 	1.556 	1.861 	2.158 	2.431



Hence at a right-angled elbow the whole head due to the velocity
very nearly is lost.


	

	Fig. 91.



	

	Fig. 92.


Bends.—Weisbach traces the loss of head at curved bends to a
similar cause to that at
elbows, but the coefficients
for bends are not
very satisfactorily ascertained.
Weisbach obtained
for the loss of
head at a bend in a pipe
of circular section

ɧb = ζbv2 / 2g;

(6)

ζb = 0.131 + 1.847 (d/2ρ)7/2,

where d is the diameter
of the pipe and ρ the
radius of curvature of
the bend. The resistance
at bends is small and at present very ill determined.

Valves, Cocks and Sluices.—These produce a contraction of the
water-stream, similar to that for an abrupt
diminution of section already discussed. The
loss of head may be taken as before to be

ɧv = ζvv2 / 2g;

(7)

where v is the velocity in the pipe beyond the valve
and ζv a coefficient determined by experiment. The
following are Weisbach’s results.

Sluice in Pipe of Rectangular Section (fig. 92).
Section at sluice = ω1 in pipe = ω.


	ω1/ω = 	1.0 	0.9 	0.8 	0.7 	0.6 	0.5 	0.4 	0.3 	0.2 	0.1

	ζv = 	0.00 	.09 	.39 	.95 	2.08 	4.02 	8.12 	17.8 	44.5 	193



Sluice in Cylindrical Pipe (fig. 93).


	Ratio of height of opening
 to diameter of pipe 	1.0 	7⁄8 	3⁄4 	5⁄8 	1⁄2 	3⁄8 	1⁄4 	1⁄5

	ω1/ω = 	1.00 	0.948 	.856 	.740 	.609 	.466 	.315 	.159

	ζv = 	0.00 	0.07 	0.26 	0.81 	2.06 	5.52 	17.0 	97.8




	
	

	Fig. 93.
	Fig. 94.


Cock in a Cylindrical Pipe (fig. 94). Angle through which cock
is turned = θ.


	θ = 	5° 	10° 	15° 	20° 	25° 	30° 	35°

	Ratio of

cross

sections 	.926 	.850 	.772 	.692 	.613 	.535 	.458

	ζv = 	.05 	.29 	.75 	1.56 	3.10 	5.47 	9.68




	θ = 	40° 	45° 	50° 	55° 	60° 	65° 	82°

	Ratio of

cross

sections 	.385 	.315 	.250 	.190 	.137 	.091 	0

	ζv = 	17.3 	31.2 	52.6 	106 	206 	486 	∞



Throttle Valve in a Cylindrical Pipe (fig. 95)


	θ = 	5° 	10° 	15° 	20° 	25° 	30° 	35° 	40°

	ζv = 	.24 	.52 	.90 	1.54 	2.51 	3.91 	6.22 	10.8




	θ = 	45° 	50° 	55° 	60° 	65° 	70° 	90°

	ζv = 	18.7 	32.6 	58.8 	118 	256 	751 	∞




	

	Fig. 95.


§ 84. Practical Calculations on the Flow of Water in Pipes.—In
the following explanations it will be assumed that the pipe is of so
great a length that only the
loss of head in friction against
the surface of the pipe needs
to be considered. In general
it is one of the four quantities
d, i, v or Q which requires
to be determined. For since
the loss of head h is given by
the relation h = il, this need
not be separately considered.

There are then three equations
(see eq. 4, § 72, and 9a, § 76) for the solution of such problems
as arise:—

ζ = α (1 + 1/12d);

(1)

where α = 0.005 for new and = 0.01 for incrusted pipes.

ζv2 / 2g = 1⁄4di.

(2)

Q = 1⁄4πd2v.

(3)

Problem 1. Given the diameter of the pipe and its virtual slope,
to find the discharge and velocity of flow. Here d and i are given,
and Q and v are required. Find ζ from (1); then v from (2); lastly
Q from (3). This case presents no difficulty.

By combining equations (1) and (2), v is obtained directly:—

v = √ (gdi/2ζ) = √ (g/2α) √ [di / {1 + 1/12d}].

(4)


	For new pipes 	√ (g/2α) = 56.72

	For incrusted pipes 	= 40.13



For pipes not less than 1, or more than 4 ft. in diameter, the
mean values of ζ are


	For new pipes 	0.00526

	For incrusted pipes 	0.01052.



Using these values we get the very simple expressions—

	 
v = 55.31 √ (di) for new pipes

= 39.11 √ (di) for incrusted pipes.


 


(4a)

Within the limits stated, these are accurate enough for practical
purposes, especially as the precise value of the coefficient ζ cannot
be known for each special case.

Problem 2. Given the diameter of a pipe and the velocity of flow,
to find the virtual slope and discharge. The discharge is given by
(3); the proper value of ζ by (1); and the virtual slope by (2).
This also presents no special difficulty.

Problem 3. Given the diameter of the pipe and the discharge, to
find the virtual slope and velocity. Find v from (3); ζ from (1);
lastly i from (2). If we combine (1) and (2) we get

i = ζ (v2/2g) (4/d) = 2a {1 + 1/12d} v2/gd;

(5)

and, taking the mean values of ζ for pipes from 1 to 4 ft. diameter,
given above, the approximate formulae are

	 
i = 0.0003268 v2/d for new pipes

= 0.0006536 v2/d for incrusted pipes.


 


(5a)

Problem 4. Given the virtual slope and the velocity, to find the
diameter of the pipe and the discharge. The diameter is obtained
from equations (2) and (1), which give the quadratic expression

d2 − d (2αv2/gi) − αv2/6gi = 0.

∴ d = αv2/gi + √ {(αv2/gi) (αv2/gi + 1/6)}.

(6)

For practical purposes, the approximate equations

	 
d = 2αv2/gi + 1/12

= 0.00031 v2/i + .083 for new pipes

= 0.00062 v2/i + .083 for incrusted pipes


 


(6a)

are sufficiently accurate.

Problem 5. Given the virtual slope and the discharge, to find the
diameter of the pipe and velocity of flow. This case, which often
occurs in designing, is the one which is least easy of direct solution.
From equations (2) and (3) we get—

d5 = 32ζQ2 / gπ2i.

(7)

If now the value of ζ in (1) is introduced, the equation becomes very
cumbrous. Various approximate methods of meeting the difficulty
may be used.

(a) Taking the mean values of ζ given above for pipes of 1 to 4
ft. diameter we get

	 
d = 5√ (32ζ/gπ2) 5√ (Q2/i)

= 0.2216 5√ (Q2/i) for new pipes

= 0.2541 5√ (Q2/i) for incrusted pipes;


 


(8)

equations which are interesting as showing that when the value of
ζ is doubled the diameter of pipe for a given discharge is only increased
by 13%.



(b) A second method is to obtain a rough value of d by assuming
ζ = α. This value is

d′ = 5√ (32Q2 / gπ2i) 5√ α = 0.6319 5√ (Q2/i) 5√ α.

Then a very approximate value of ζ is

ζ′ = α (1 + 1/12d′);

and a revised value of d, not sensibly differing from the exact value,
is

d″ = 5√ (32Q2 / gπ2i) 5√ ζ′ = 0.6319 5√ (Q2/i) 5√ ζ′.

(c) Equation 7 may be put in the
form

d = 5√ (32αQ2 / gπ2i) 5√ (1 + 1/12d).

(9)

Expanding the term in brackets,

5√ (1 + 1/12d) = 1 + 1/60d − 1/1800d2 ...

Neglecting the terms after the second,

	 
d = 5√ (32α / gπ2) 5√ (Q2/i) · {1 + 1/60d}

= 5√ (32α / gπ2) 5√ (Q2/i) + 0.01667;


 


(9a)

and

	 
5√ (32α / gπ2) = 0.219 for new pipes

= 0.252 for incrusted pipes.


 



	

	Fig. 96.



	

	Fig. 97.


§ 85. Arrangement of Water Mains
for Towns’ Supply.—Town mains are
usually supplied oy gravitation from
a service reservoir, which in turn is
supplied by gravitation from a storage reservoir or by pumping
from a lower level. The service reservoir should contain three
days’ supply or in important cases much more. Its elevation
should be such that water is delivered at a pressure of at least about
100 ft. to the highest parts of the district. The greatest pressure in
the mains is usually about 200 ft., the pressure for which ordinary
pipes and fittings are designed. Hence if the district supplied has
great variations of level it must be divided into zones of higher and
lower pressure. Fig. 96 shows a district of two zones each with its
service reservoir and a range of pressure in the lower district from
100 to 200 ft. The total supply required is in England about 25
gallons per head per day. But in many towns, and especially in
America, the supply is considerably greater, but also in many cases
a good deal of the supply is lost by leakage of the mains. The supply
through the branch mains of a distributing system is calculated from
the population supplied. But in determining the capacity of the
mains the fluctuation of the demand must be allowed for. It is usual
to take the maximum demand at twice the average demand. Hence
if the average demand is 25 gallons per head per day, the mains
should be calculated for 50 gallons per head per day.


	

	Fig. 98.


§ 86. Determination of the Diameters of Different Parts of a Water
Main.—When the plan of the arrangement of mains is determined
upon, and the supply to each locality and the pressure required is
ascertained, it remains to determine the diameters of the pipes. Let
fig. 97 show an elevation of a main ABCD ..., R being the reservoir
from which the supply is derived. Let NN be the datum line of the
levelling operations, and Ha, Hb ... the heights of the main above
the datum line, Hr being the height of the water surface in the
reservoir from the same datum. Set up next heights AA1, BB1, ...
representing the minimum pressure height necessary for the adequate
supply of each locality. Then A1B1C1D1 ... is a line which should
form a lower limit to the line of virtual slope. Then if heights
ɧa, ɧb, ɧc ... are taken representing the actual losses of head in each
length la, lb, lc ... of the main, A0B0C0 will be the line of virtual
slope, and it will be obvious at what points such as D0 and E0, the
pressure is deficient, and a different choice of diameter of main is
required. For any point z in the length of the main, we have

Pressure height = Hr − Hz − (ɧa + ɧb + ... ɧz).

Where no other circumstance limits the loss of head to be assigned
to a given length of main, a consideration of the safety of the main
from fracture by hydraulic shock leads to a limitation of the velocity
of flow. Generally the velocity in water mains lies between 11⁄2 and
41⁄2 ft. per second. Occasionally the velocity in pipes reaches 10 ft.
per second, and in hydraulic machinery working under enormous
pressures even 20 ft. per second. Usually the velocity diminishes
along the main as the discharge diminishes, so as to reduce somewhat
the total loss of head which is liable to render the pressure insufficient
at the end of the main.

J. T. Fanning gives the following velocities as suitable in pipes
for towns’ supply:—


	Diameter in inches 	4 	8 	12 	18 	24 	30 	36

	Velocity in feet per sec. 	2.5 	3.0 	3.5 	4.5 	5.3 	6.2 	7.0



§ 87. Branched Pipe connecting Reservoirs at Different Levels.—Let
A, B, C (fig. 98) be three reservoirs connected by the arrangement of
pipes shown,—l1, d1, Q1, v1; l2, d2, Q2, v2; h3,
d3, Q3, v3 being the
length, diameter, discharge and velocity in the three portions of
the main pipe. Suppose the dimensions and positions of the pipes
known and the discharges required.

If a pressure column is introduced at X, the water will rise to a
height XR, measuring the pressure at X, and aR, Rb, Rc will be the
lines of virtual slope. If the free surface level at R is above b, the
reservoir A supplies B and C, and if
R is below b, A and B supply C.
Consequently there are three cases:—


	I. 	R above b; Q1 = Q2 + Q3.

	II. 	R level with b; Q1 = Q3; Q2 = 0

	III. 	R below b; Q1 + Q2 = Q3.



To determine which case has to be
dealt with in the given conditions,
suppose the pipe from X to B closed
by a sluice. Then there is a simple
main, and the height of free surface
h′ at X can be determined. For this
condition

ha − h′ = ζ (v12/2g) (4l1/d1)
 = 32ζQ′2l1 / gπ2d15;

h′ − hc = ζ (v32/2g) (4l3/d3)
 = 32ζQ′2l3 / gπ2d35;

where Q′ is the common discharge
of the two portions of the pipe.
Hence

(ha − h′) / (h′ − hc) = l1d35 / l3d15,

from which h′ is easily obtained. If then h′ is greater than hb,
opening the sluice between X and B will allow flow towards B, and
the case in hand is case I. If h′ is less than hb, opening the sluice
will allow flow from B, and the case is case III. If h′ = hb, the case
is case II., and is already completely solved.



The true value of h must lie between h′ and hb. Choose a new
value of h, and recalculate Q1, Q2, Q3. Then if

Q1 > Q2 + Q3 in case I.,

or

Q1 + Q2 > Q3 in case III.,

the value chosen for h is too small, and a new value must be chosen.

If

Q1 < Q2 + Q3 in case I.,

or

Q1 + Q2 < Q3 in case III.,

the value of h is too great.

Since the limits between which h can vary are in practical cases not
very distant, it is easy to approximate to values sufficiently accurate.

§ 88. Water Hammer.—If in a pipe through which water is flowing
a sluice is suddenly closed so as to arrest the forward movement of
the water, there is a rise of pressure which in some cases is serious
enough to burst the pipe. This action is termed water hammer or
water ram. The fluctuation of pressure is an oscillating one and
gradually dies out. Care is usually taken that sluices should only be
closed gradually and then the effect is inappreciable. Very careful
experiments on water hammer were made by N. J. Joukowsky at
Moscow in 1898 (Stoss in Wasserleitungen, St Petersburg, 1900), and
the results are generally confirmed by experiments made by E. B.
Weston and R. C. Carpenter in America. Joukowsky used pipes,
2, 4 and 6 in. diameter, from 1000 to 2500 ft. in length. The sluice
closed in 0.03 second, and the fluctuations of pressure were automatically
registered. The maximum excess pressure due to water-hammer
action was as follows:—


	Pipe 4-in. diameter. 	Pipe 6-in. diameter.

	Velocity

ft. per sec. 	Excess Pressure.

℔ per sq. in.
	Velocity

ft. per sec. 	Excess Pressure.

℔ per sq. in.

	0.5 	 31 	0.6 	 43

	2.9 	168 	3.0 	173

	4.1 	232 	5.6 	369

	9.2 	519 	7.5 	426



In some cases, in fixing the thickness of water mains, 100 ℔ per sq. in.
excess pressure is allowed to cover the effect of water hammer.
With the velocities usual in water mains, especially as no valves can
be quite suddenly closed, this appears to be a reasonable allowance
(see also Carpenter, Am. Soc. Mech. Eng., 1893).

IX. FLOW OF COMPRESSIBLE FLUIDS IN PIPES

§ 89. Flow of Air in Long Pipes.—When air flows through a long
pipe, by far the greater part of the work expended is used in overcoming
frictional resistances due to the surface of the pipe. The
work expended in friction generates heat, which for the most part
must be developed in and given back to the air. Some heat may
be transmitted through the sides of the pipe to surrounding materials,
but in experiments hitherto made the amount so conducted away
appears to be very small, and if no heat is transmitted the air in the
tube must remain sensibly at the same temperature during expansion.
In other words, the expansion may be regarded as isothermal
expansion, the heat generated by friction exactly neutralizing the
cooling due to the work done. Experiments on the pneumatic tubes
used for the transmission of messages, by R. S. Culley and R. Sabine
(Proc. Inst. Civ. Eng. xliii.), show that the change of temperature of
the air flowing along the tube is much less than it would be in adiabatic
expansion.

§ 90. Differential Equation of the Steady Motion of Air Flowing in
a Long Pipe of Uniform Section.—When air expands at a constant
absolute temperature τ, the relation between the pressure p in
pounds per square foot and the density or weight per cubic foot G
is given by the equation

p/G = cτ,

(1)

where c = 53.15. Taking τ = 521, corresponding to a temperature of
60° Fahr.,

cτ = 27690 foot-pounds.

(2)


	

	Fig. 99.


The equation of continuity, which expresses the condition that in
steady motion the same weight of fluid, W, must pass through each
cross section of the stream in
the unit of time, is

GΩu = W = constant,

(3)

where Ω is the section of the
pipe and u the velocity of
the air. Combining (1) and
(3),

Ωup/W = cτ = constant.

(3a)

Since the work done by
gravity on the air during its
flow through a pipe due to
variations of its level is generally small compared with the work
done by changes of pressure, the former may in many cases be
neglected.

Consider a short length dl of the pipe limited by sections A0, A1 at
a distance dl (fig. 99). Let p, u be the pressure and velocity at A0,
p + dp and u + du those at A1. Further, suppose that in a very short
time dt the mass of air between A0A1 comes to A′0A′1 so that A0A′0 =
udt and A1A′1 = (u + du) dt1. Let Ω be the section, and m the hydraulic
mean radius of the pipe, and W the weight of air flowing through the
pipe per second.

From the steadiness of the motion the weight of air between the
sections A0A′0, and A1A′1 is the same. That is,

W dt = GΩu dt = GΩ (u + du) dt.

By analogy with liquids the head lost in friction is, for the length
dl (see § 72, eq. 3), ζ (u2/2g) (dl/m). Let H = u2/2g. Then the head
lost is ζ(H/m)dl; and, since Wdt ℔ of air flow through the
pipe in the time considered, the work expended in friction is
−ζ (H/m)W dl dt. The change of kinetic energy in dt seconds is the
difference of the kinetic energy of A0A′0 and A1A′1, that is,

(W/g) dt {(u + du)2 − u2} / 2 = (W/g) u du dt = W dH dt.

The work of expansion when Ωudt cub. ft. of air at a pressure
p expand to Ω(u + du) dt cub. ft. is Ωp du dt. But from (3a)
u = cτW/Ωp, and therefore

du / dp = −cτW / Ωp2.

And the work done by expansion is −(cτW/p) dp dt.

The work done by gravity on the mass between A0 and A1 is zero
if the pipe is horizontal, and may in other cases be neglected without
great error. The work of the pressures at the sections A0A1 is

pΩu dt − (p + dp) Ω (u + du) dt

 = −(p du + u dp) Ω dt

But from (3a)

pu = constant,

 p du + u dp = 0,

and the work of the pressures is zero. Adding together the quantities
of work, and equating them to the change of kinetic energy,

W dH dt = −(cτW/p) dp dt − ζ (H/m) W dl dt

 dH + (cτ/p) dp + ζ (H/m) dl = 0,

 dH/H + (cτ/Hp) dp + ζdl / m = 0

(4)

But

u = cτW / Ωp,

and

H = u2/2g = c2τ2W2 / 2gΩ2p2,

∴ dH/H + (2gΩ2p / cτW2) dp + ζdl / m = 0.

(4a)

For tubes of uniform section m is constant; for steady motion W
is constant; and for isothermal expansion τ is constant. Integrating,

log H + gΩ2p2 / W2cτ + ζ l / m = constant;

(5)

for

l = 0, let H = H0, and p = p0;

and for

l = l, let H = H1, and p = p1.

log (H1/H0) + (gΩ2 / W2cτ) (p12 − p02) + ζ l / m = 0.

(5a)

where p0 is the greater pressure and p1 the less, and the flow is from
A0 towards A1.

By replacing W and H,

log (p0/p1) + (gcτ / u02p02) (p12 − p02 + ζ l/m = 0


(6)

Hence the initial velocity in the pipe is

u0 = √ [{gcτ (p02 − p12)} / {p02 (ζ l/m +
 log (p0 / p1) }].

(7)

When l is great, log p0/p1 is comparatively small, and then

u0 = √ [ (gcτm/ζ l) {(p02 − p12) / p02} ],

(7a)

a very simple and easily used expression. For pipes of circular
section m = d/4, where d is the diameter:—

u0 = √ [ (gcτd / 4ζ l) {(p02 − p12) / p02} ];

(7b)

or approximately

u0 = (1.1319 − 0.7264 p1/p0) √ (gcτd / 4ζ l).

(7c)

§ 91. Coefficient of Friction for Air.—A discussion by Professor
Unwin of the experiments by Culley and Sabine on the rate of
transmission of light carriers through pneumatic tubes, in which
there is steady flow of air not sensibly affected by any resistances
other than surface friction, furnished the value ζ = .007. The pipes
were lead pipes, slightly moist, 21⁄4 in. (0.187 ft.) in diameter, and in
lengths of 2000 to nearly 6000 ft.

In some experiments on the flow of air through cast-iron pipes
A. Arson found the coefficient of friction to vary with the velocity and
diameter of the pipe. Putting

ζ = α/v + β,

(8)

he obtained the following values—


	Diameter of Pipe

in feet. 	α 	β 	ζ for 100 ft.

per second.

	1.64  	.00129 	.00483 	.00484

	1.07  	.00972 	.00640 	.00650

	 .83  	.01525 	.00704 	.00719

	 .338 	.03604 	.00941 	.00977

	 .266 	.03790 	.00959 	.00997

	 .164 	.04518 	.01167 	.01212



It is worth while to try if these numbers can be expressed in the
form proposed by Darcy for water. For a velocity of 100 ft. per
second, and without much error for higher velocities, these numbers
agree fairly with the formula

ζ = 0.005 (1 + 3/10d),

(9)

which only differs from Darcy’s value for water in that the second
term, which is always small except for very small pipes, is larger.



Some later experiments on a very large scale, by E. Stockalper
at the St Gotthard Tunnel, agree better with the value

ζ = 0.0028 (1 + 3/10d).

These pipes were probably less rough than Arson’s.

When the variation of pressure is very small, it is no longer safe
to neglect the variation of level of the pipe. For that case we may
neglect the work done by expansion, and then

z0 − z1 − p0/G0 − p1/G1 − ζ (v2/2g) (l/m) = 0,

(10)

precisely equivalent to the equation for the flow of water, z0 and z1
being the elevations of the two ends of the pipe above any datum,
p0 and p1 the pressures, G0 and G1 the densities, and v the mean
velocity in the pipe. This equation may be used for the flow of
coal gas.

§ 92. Distribution of Pressure in a Pipe in which Air is Flowing.—From
equation (7a) it results that the pressure p, at l ft. from that
end of the pipe where the pressure is p0, is

p = p0 √ (1 − ζ lu02 / mgcτ);

(11)

which is of the form

p = √ (al + b)

for any given pipe with given end pressures. The curve of free surface
level for the pipe is, therefore, a parabola with horizontal axis.
Fig. 100 shows calculated curves of pressure for two of Sabine’s
experiments, in one of which the pressure was greater than atmospheric
pressure, and in the other less than atmospheric pressure.
The observed pressures are given in brackets and the calculated
pressures without brackets. The pipe was the pneumatic tube between
Fenchurch Street and the Central Station, 2818 yds. in length.
The pressures are given in inches of mercury.


	

	Fig. 100.


Variation of Velocity in the Pipe.—Let p0, u0 be the pressure
and velocity at a given section of the pipe; p, u, the pressure and
velocity at any other section. From equation (3a)

up = cτW / Ω = constant;

so that, for any given uniform pipe,

	 
up = u0p0,

u = u0p0 / p;


 


(12)

which gives the velocity at any section in terms of the pressure,
which has already been determined. Fig. 101 gives the velocity
curves for the two experiments of Culley and Sabine, for which the
pressure curves have already been drawn. It will be seen that the
velocity increases considerably towards that end of the pipe where
the pressure is least.


	

	Fig. 101.


§ 93. Weight of Air Flowing per Second.—The weight of air discharged
per second is (equation 3a)—

W = Ωu0p0 / cτ.

From equation (7b), for a pipe of circular section and diameter d,

	 
W = 1⁄4π √ (gd5 (p02 − p12) / ζ lcτ),

= .611 √ (d5 (p02 − p12) / ζ lτ).


 


(13)

Approximately

W = (.6916p0 − .4438p1) (d5 / ζ lτ)1/2.

(13a)

§ 94. Application to the Case of Pneumatic Tubes for the Transmission
of Messages.—In Paris, Berlin, London, and other towns, it
has been found cheaper to transmit messages in pneumatic tubes
than to telegraph by electricity. The tubes are laid underground
with easy curves; the messages are made into a roll and placed in
a light felt carrier, the resistance of which in the tubes in London
is only 3⁄4 oz. A current of air forced into the tube or drawn through
it propels the carrier. In most systems the current of air is steady
and continuous, and the carriers are introduced or removed without
materially altering the flow of air.

Time of Transit through the Tube.—Putting t for the time of transit
from 0 to l,

t = ∫l0 dl/u,

From (4a) neglecting dH/H, and putting m = d/4,

dl = gdΩ2p dp / 2ζW2cr.

From (1) and (3)

u = Wcτ / pΩ;

 dl/u = gdΩ3p2 dp / 2ζW3c2τ2;

t = ∫p0p1 g dΩ3 p2 dp / 2ζW3c2τ2,

 = g dΩ3 (p03 − p13) / 6ζW3c2τ2.

(14)

But

W = p0u0Ω / cτ;

∴ t = gdcτ (p03 − p13) / 6ζp03u03,

 = ζ1/2 l3/2 (p03 − p13) / 6(gcτd)1/2 (p02 − p12)3/2;

(15)

If τ = 521°, corresponding to 60° F.,

t = .001412 ζ1/2 l3/2 (p03 − p13) / d1/2 (p02 − p12)3/2;

(15a)

which gives the time of transmission in terms of the initial and final
pressures and the dimensions of the tube.

Mean Velocity of Transmission.—The mean velocity is l/t; or, for
τ = 521°,

umean = 0.708 √ {d (p02 − p12)3/2 / ζ l (p03 − p13)}.

(16)

The following table gives some results:—


	  	Absolute

Pressures in

℔ per sq. in. 	Mean Velocities for Tubes of a

length in feet.

	  	p0 	p1 	1000 	2000 	3000 	4000 	5000

	Vacuum

Working 	15 	5 	99.4 	70.3 	57.4 	49.7 	44.5

	15 	10 	67.2 	47.5 	38.8 	34.4 	30.1

	Pressure

Working 	20 	15 	57.2 	40.5 	33.0 	28.6 	25.6

	25 	15 	74.6 	52.7 	43.1 	37.3 	33.3

	30 	15 	84.7 	60.0 	49.0 	42.4 	37.9



Limiting Velocity in the Pipe when the Pressure at one End is
diminished indefinitely.—If in the last equation there be put p1 = 0,
then

u′mean = 0.708 √ (d / ζ l);

where the velocity is independent of the pressure p0 at the other
end, a result which apparently must be absurd. Probably for long
pipes, as for orifices, there is a limit to the ratio of the initial and
terminal pressures for which the formula is applicable.

X. FLOW IN RIVERS AND CANALS

§ 95. Flow of Water in Open Canals and Rivers.—When water
flows in a pipe the section at any point is determined by the form
of the boundary. When it flows in an open channel with free upper
surface, the section depends on the velocity due to the dynamical
conditions.

Suppose water admitted to an unfilled canal. The channel will
gradually fill, the section and velocity at each point gradually
changing. But if the inflow to the canal at its head is constant,
the increase of cross section and diminution of velocity at each
point attain after a time a limit. Thenceforward the section and
velocity at each point are constant, and the motion is steady, or
permanent regime is established.

If when the motion is steady the sections of the stream are all
equal, the motion is uniform. By hypothesis, the inflow Ωv is constant
for all sections, and Ω is constant; therefore v must be constant
also from section to section. The case is then one of uniform steady
motion. In most artificial channels the form of section is constant,
and the bed has a uniform slope. In that case the motion is uniform,
the depth is constant, and the stream surface is parallel to the bed.
If when steady motion is established the sections are unequal, the
motion is steady motion with varying velocity from section to
section. Ordinary rivers are in this condition, especially where the
flow is modified by weirs or obstructions. Short unobstructed
lengths of a river may be treated as of uniform section without great
error, the mean section in the length being put for the actual sections.


	

	Fig. 102.


In all actual streams the different fluid filaments have different
velocities, those near the surface and centre moving faster than
those near the bottom and sides. The ordinary formulae for the
flow of streams rest on a hypothesis that this variation of velocity
may be neglected, and that all the filaments may be treated as having
a common velocity equal to the mean velocity of the stream. On
this hypothesis, a plane layer abab (fig. 102) between sections normal

to the direction of motion is treated as sliding down the channel to
a′a′b′b′ without deformation. The component of the weight parallel
to the channel bed balances the friction against the channel, and
in estimating the friction the velocity of rubbing is taken to be the
mean velocity of the stream. In actual streams, however, the
velocity of rubbing on which the friction depends is not the mean
velocity of the stream, and is not in any simple relation with it, for
channels of different forms. The
theory is therefore obviously based
on an imperfect hypothesis. However,
by taking variable values for
the coefficient of friction, the errors
of the ordinary formulae are to a
great extent neutralized, and they
may be used without leading to
practical errors. Formulae have
been obtained based on less restricted
hypotheses, but at present they are not practically so
reliable, and are more complicated than the formulae obtained in
the manner described above.

§ 96. Steady Flow of Water with Uniform Velocity in Channels of
Constant Section.—Let aa′, bb′ (fig. 103) be two cross sections normal
to the direction of motion at a distance dl. Since the mass aa′bb′
moves uniformly, the external forces acting on it are in equilibrium.
Let Ω be the area of the cross sections, χ the wetted perimeter,
pq + qr + rs, of a section. Then the quantity m = Ω/χ is termed the
hydraulic mean depth of the section. Let v be the mean velocity
of the stream, which is taken as the common velocity of all the
particles, i, the slope or fall of the stream in feet, per foot, being
the ratio bc/ab.


	

	Fig. 103.


The external forces acting on aa′bb′ parallel to the direction of
motion are three:—(a) The pressures on aa′ and bb′, which are
equal and opposite since the sections are equal and similar, and the
mean pressures on each are the same. (b) The component of the
weight W of the mass in the direction of motion, acting at its centre
of gravity g. The weight of the mass aa′bb′ is GΩ dl, and the component
of the weight in the direction of motion is GΩdl × the cosine of
the angle between Wg and ab, that is, GΩdl cos abc = GΩ dl bc/ab =
GΩidl. (c) There is the friction of the stream on the sides and
bottom of the channel. This is proportional to the area χdl of
rubbing surface and to a function of the velocity which may be
written ƒ(v); ƒ(v) being the friction per sq. ft. at a velocity v. Hence
the friction is −χ dl ƒ(v). Equating the sum of the forces to zero,

GΩi dl − χ dl ƒ(v) = 0,

 ƒ(v) / G = Ωi / χ = mi.

(1)

But it has been already shown (§ 66) that ƒ(v) = ζGv2/2g,

∴ ζv2 / 2g = mi.

(2)

This may be put in the form

v = √ (2g/ζ) √ (mi) = c √ (mi);

(2a)

where c is a coefficient depending on the roughness and form of the
channel.

The coefficient of friction ζ varies greatly with the degree of
roughness of the channel sides, and somewhat also with the velocity.
It must also be made to depend on the absolute dimensions of the
section, to eliminate the error of neglecting the variations of velocity
in the cross section. A common mean value assumed for ζ is 0.00757.
The range of values will be discussed presently.

It is often convenient to estimate the fall of the stream in feet per
mile, instead of in feet per foot. If f is the fall in feet per mile,

f = 5280 i.

Putting this and the above value of ζ in (2a), we get the very simple
and long-known approximate formula for the mean velocity of a
stream—

v = 1⁄4 1⁄2 √ (2mf).

(3)

The flow down the stream per second, or discharge of the stream,
is

Q = Ωv = Ωc √ (mi).

(4)

§ 97. Coefficient of Friction for Open Channels.—Various expressions
have been proposed for the coefficient of friction for
channels as for pipes. Weisbach, giving attention chiefly to the
variation of the coefficient of friction with the velocity, proposed an
expression of the form

ζ = α (1 + β/v),

(5)

and from 255 experiments obtained for the constants the values

α = 0.007409; β = 0.1920.

This gives the following values at different velocities:—


	v = 	0.3 	0.5 	0.7 	1 	11⁄2 	2 	3 	5 	7 	10 	15

	ζ = 	0.01215 	0.01025 	0.00944 	0.00883 	0.00836 	0.00812 	0.90788 	0.00769 	0.00761 	0.00755 	0.00750



In using this value of ζ when v is not known, it is best to proceed
by approximation.

§ 98. Darcy and Bazin’s Expression for the Coefficient of Friction.—Darcy
and Bazin’s researches have shown that ζ varies very greatly
for different degrees of roughness of the channel bed, and that it
also varies with the dimensions of the channel. They give for ζ an
empirical expression (similar to that for pipes) of the form

ζ = α (1 + β / m);

(6)

where m is the hydraulic mean depth. For different kinds of
channels they give the following values of the coefficient of friction:—


	Kind of Channel. 	α 	β

	I. Very smooth channels, sides of smooth cement or planed timber 	.00294 	0.10

	II. Smooth channels, sides of ashlar, brickwork, planks 	.00373 	0.23

	III. Rough channels, sides of rubble masonry or pitched with stone 	.00471 	0.82

	IV. Very rough canals in earth 	.00549 	4.10

	V. Torrential streams encumbered with detritus 	.00785 	5.74



The last values (Class V.) are not Darcy and Bazin’s, but are taken
from experiments by Ganguillet and Kutter on Swiss streams.

The following table very much facilitates the calculation of the
mean velocity and discharge of channels, when Darcy and Bazin’s
value of the coefficient of friction is used. Taking the general
formula for the mean velocity already given in equation (2a) above,

v = c √ (mi),

where c = √ (2g/ζ), the following table gives values of c for channels
of different degrees of roughness, and for such values of the hydraulic
mean depths as are likely to occur in practical calculations:—

Values of c in v = c √ (mi), deduced from Darcy and Bazin’s Values.


	Hydraulic

Mean.

Depth = m. 	Very Smooth

Channels.

Cement. 	Smooth

Channels.

Ashlar or

Brickwork. 	Rough

Channels.

Rubble

Masonry. 	Very Rough

Channels.

Canals in

Earth. 	Excessively

Rough Channels

encumbered

with Detritus.

	 .25 	125 	 95 	 57 	 26 	18.5

	 .5 	135 	110 	 72 	 36 	25.6

	 .75 	139 	116 	 81 	 42 	30.8

	 1.0 	141 	119 	 87 	 48 	34.9

	 1.5 	143 	122 	 94 	 56 	41.2

	 2.0 	144 	124 	 98 	 62 	46.0

	 2.5 	145 	126 	101 	 67 	..

	 3.0 	145 	126 	104 	 70 	53 

	 3.5 	146 	127 	105 	 73 	..

	 4.0 	146 	128 	106 	 76 	58 

	 4.5 	146 	128 	107 	 78 	..

	 5.0 	146 	128 	108 	 80 	62 

	 5.5 	146 	129 	109 	 82 	..

	 6.0 	147 	129 	110 	 84 	65 

	 6.5 	147 	129 	110 	 85 	..

	 7.0 	147 	129 	110 	 86 	67 

	 7.5 	147 	129 	111 	 87 	..

	 8.0 	147 	130 	111 	 88 	69 

	 8.5 	147 	130 	112 	 89 	..

	 9.0 	147 	130 	112 	 90 	71 

	 9.5 	147 	130 	112 	 90 	..

	10.0 	147 	130 	112 	 91 	72 

	11 	147 	130 	113 	 92 	..

	12 	147 	130 	113 	 93 	74 

	13 	147 	130 	113 	 94 	..

	14 	147 	130 	113 	 95 	..

	15 	147 	130 	114 	 96 	77 

	16 	147 	130 	114 	 97 	..

	17 	147 	130 	114 	 97 	..

	18 	147 	130 	114 	 98 	..

	20 	147 	131 	114 	 98 	80 

	25 	148 	131 	115 	100 	..

	30 	148 	131 	115 	102 	83 

	40 	148 	131 	116 	103 	85 

	50 	148 	131 	116 	104 	86 

	∞ 	148 	131 	117 	108 	91 



§ 99. Ganguillet and Kutter’s Modified Darcy Formula.—Starting
from the general expression v = c√mi, Ganguillet and Kutter
examined the variations of c for a wider variety of cases than those
discussed by Darcy and Bazin. Darcy and Bazin’s experiments
were confined to channels of moderate section, and to a limited
variation of slope. Ganguillet and Kutter brought into the discussion
two very distinct and important additional series of results.
The gaugings of the Mississippi by A. A. Humphreys and H. L.
Abbot afford data of discharge for the case of a stream of exceptionally
large section and or very low slope. On the other hand, their
own measurements of the flow in the regulated channels of some

Swiss torrents gave data for cases in which the inclination and
roughness of the channels were exceptionally great. Darcy and
Bazin’s experiments alone were conclusive as to the dependence of
the coefficient c on the dimensions of the channel and on its roughness
of surface. Plotting values of c for channels of different inclination
appeared to indicate that it also depended on the slope of
the stream. Taking the Mississippi data only, they found


	c = 256 for an inclination of 	0.0034 per thousand,

	  = 154    ”     ” 	0.02     ”



so that for very low inclinations no constant value of c independent
of the slope would furnish good values of the discharge. In small
rivers, on the other hand, the values of c vary little with the slope.
As regards the influence of roughness of the sides of the channel a
different law holds. For very small channels differences of roughness
have a great influence on the discharge, but for very large
channels different degrees of roughness have but little influence, and
for indefinitely large channels the influence of different degrees of
roughness must be assumed to vanish. The coefficients given by
Darcy and Bazin are different for each of the classes of channels of
different roughness, even when the dimensions of the channel are
infinite. But, as it is much more probable that the influence of the
nature of the sides diminishes indefinitely as the channel is larger,
this must be regarded as a defect in their formula.

Comparing their own measurements in torrential streams in
Switzerland with those of Darcy and Bazin, Ganguillet and Kutter
found that the four classes of coefficients proposed by Darcy and
Bazin were insufficient to cover all cases. Some of the Swiss streams
gave results which showed that the roughness of the bed was
markedly greater than in any of the channels tried by the French
engineers. It was necessary therefore in adopting the plan of
arranging the different channels in classes of approximately similar
roughness to increase the number of classes. Especially an additional
class was required for channels obstructed by detritus.

To obtain a new expression for the coefficient in the formula

v = √ (2g / ζ) √ (mi) = c √ (mi),

Ganguillet and Kutter proceeded in a purely empirical way. They
found that an expression of the form

c = α / (1 + β/√ m)

could be made to fit the experiments somewhat better than Darcy’s
expression. Inverting this, we get

1/c = 1/α + β/α √ m,

an equation to a straight line having 1/√m for abscissa, 1/c for
ordinate, and inclined to the axis of abscissae at an angle the tangent
of which is β/α.

Plotting the experimental values of 1/c and 1/√ m, the points so
found indicated a curved rather than a straight line, so that β must
depend on α. After much comparison the following form was
arrived at—

c = (A + l/n) / (1 + An / √ m),

where n is a coefficient depending only on the roughness of the sides
of the channel, and A and l are new coefficients, the value of which
remains to be determined. From what has been already stated, the
coefficient c depends on the inclination of the stream, decreasing as
the slope i increases.

Let

A = a + p/i.

Then

c = (a + l/n + p/i) / {1 + (a + p/i) n/√ m},

the form of the expression for c ultimately adopted by Ganguillet
and Kutter.

For the constants a, l, p Ganguillet and Kutter obtain the values
23, 1 and 0.00155 for metrical measures, or 41.6, 1.811 and 0.00281
for English feet. The coefficient of roughness n is found to vary
from 0.008 to 0.050 for either metrical or English measures.

The most practically useful values of the coefficient of roughness n
are given in the following table:—


	Nature of Sides of Channel. 	Coefficient of

Roughness n.

	Well-planed timber 	0.009

	Cement plaster 	0.010

	Plaster of cement with one-third sand 	0.011

	Unplaned planks 	0.012

	Ashlar and brickwork 	0.013

	Canvas on frames 	0.015

	Rubble masonry 	0.017

	Canals in very firm gravel 	0.020

	Rivers and canals in perfect order, free from stones or weeds 	0.025

	Rivers and canals in moderately good order, not quite free
 from stones and weeds 	0.030

	Rivers and canals in bad order, with weeds and detritus 	0.035

	Torrential streams encumbered with detritus 	0.050



Ganguillet and Kutter’s formula is so cumbrous that it is difficult
to use without the aid of tables.

Lowis D’A. Jackson published complete and extensive tables for
facilitating the use of the Ganguillet and Kutter formula (Canal
and Culvert Tables, London, 1878). To lessen calculation he puts the
formula in this form:—

M = n (41.6 + 0.00281/i);

v = (√ m/n) {(M + 1.811) / (M + √m)} √ (mi).

The following table gives a selection of values of M, taken from
Jackson’s tables:—


	i 	Values of M for n =

	0.010 	0.012 	0.015 	0.017 	0.020 	0.025 	0.030

	.00001 	3.2260 	3.8712 	4.8390 	5.4842 	6.4520 	8.0650 	9.6780

	.00002 	1.8210 	2.1852 	2.7315 	3.0957 	3.6420 	4.5525 	5.4630

	.00004 	1.1185 	1.3422 	1.6777 	1.9014 	2.2370 	2.7962 	3.3555

	.00006 	0.8843 	1.0612 	1.3264 	1.5033 	1.7686 	2.2107 	2.6529

	.00008 	0.7672 	0.9206 	1.1508 	1.3042 	1.5344 	1.9180 	2.3016

	.00010 	0.6970 	0.8364 	1.0455 	1.1849 	1.3940 	1.7425 	2.0910

	.00025 	0.5284 	0.6341 	0.7926 	0.8983 	1.0568 	1.3210 	1.5852

	.00050 	0.4722 	0.5666 	0.7083 	0.8027 	0.9444 	1.1805 	1.4166

	.00075 	0.4535 	0.5442 	0.6802 	0.7709 	0.9070 	1.1337 	1.3605

	.00100 	0.4441 	0.5329 	0.6661 	0.7550 	0.8882 	1.1102 	1.3323

	.00200 	0.4300 	0.5160 	0.6450 	0.7310 	0.8600 	1.0750 	1.2900

	.00300 	0.4254 	0.5105 	0.6381 	0.7232 	0.8508 	1.0635 	1.2762



A difficulty in the use of this formula is the selection of the coefficient
of roughness. The difficulty is one which no theory will
overcome, because no absolute measure of the roughness of stream
beds is possible. For channels lined with timber or masonry the
difficulty is not so great. The constants in that case are few and
sufficiently defined. But in the case of ordinary canals and rivers the
case is different, the coefficients having a much greater range. For
artificial canals in rammed earth or gravel n varies from 0.0163 to
0.0301. For natural channels or rivers n varies from 0.020 to 0.035.

In Jackson’s opinion even Kutter’s numerous classes of channels
seem inadequately graduated, and he proposes for artificial canals
the following classification:—


	I. 	Canals in very firm gravel, in perfect order 	n = 0.02

	II. 	Canals in earth, above the average in order 	n = 0.0225

	III. 	Canals in earth, in fair order 	n = 0.025

	IV. 	Canals in earth, below the average in order 	n = 0.0275

	V. 	Canals in earth, in rather bad order, partially
  overgrown with weeds and obstructed by detritus. 	n = 0.03



Ganguillet and Kutter’s formula has been considerably used
partly from its adoption in calculating tables for irrigation work in
India. But it is an empirical formula of an unsatisfactory form.
Some engineers apparently have assumed that because it is complicated
it must be more accurate than simpler formulae. Comparison
with the results of gaugings shows that this is not the case.
The term involving the slope was introduced to secure agreement
with some early experiments on the Mississippi, and there is strong
reason for doubting the accuracy of these results.

§ 100. Bazin’s New Formula.—Bazin subsequently re-examined
all the trustworthy gaugings of flow in channels and proposed a
modification of the original Darcy formula which appears to be
more satisfactory than any hitherto suggested (Étude d’une nouvelle
formule, Paris, 1898). He points out that Darcy’s original formula,
which is of the form mi/v2 = α + β/m, does not agree with experiments
on channels as well as with experiments on pipes. It is an objection
to it that if m increases indefinitely the limit towards which mi/v2
tends is different for different values of the roughness. It would
seem that if the dimensions of a canal are indefinitely increased the
variation of resistance due to differing roughness should vanish.
This objection is met if it is assumed that √ (mi/v2) = α + β/√ m,
so that if a is a constant mi/v2 tends to the limit a when m increases.
A very careful discussion of the results of gaugings shows that they
can be expressed more satisfactorily by this new formula than by
Ganguillet and Kutter’s. Putting the equation in the form ζv2/2g =
mi, ζ = 0.002594 (1 + γ/√ m), where γ has the following values:—


	I. 	Very smooth sides, cement, planed plank, γ = 	0.109

	II. 	Smooth sides, planks, brickwork 	0.290

	III. 	Rubble masonry sides 	0.833

	IV. 	Sides of very smooth earth, or pitching 	1.539

	V. 	Canals in earth in ordinary condition 	2.353

	VI. 	Canals in earth exceptionally rough 	3.168



§ 101. The Vertical Velocity Curve.—If at each point along a
vertical representing the depth of a stream, the velocity at that
point is plotted horizontally, the curve obtained is the vertical
velocity curve and it has been shown by many observations that
it approximates to a parabola with horizontal axis. The vertex of
the parabola is at the level of the greatest velocity. Thus in fig. 104
OA is the vertical at which velocities are observed; v0 is the surface;
vz the maximum and vd the bottom velocity. B C D is the
vertical velocity curve which corresponds with a parabola having its
vertex at C. The mean velocity at the vertical is

vm = 1⁄3 [2vz + vd + (dz/d) (v0 − vd)].


	

	Fig. 104.


The Horizontal Velocity Curve.—Similarly if at each point along a
horizontal representing the width of the stream the velocities are

plotted, a curve is obtained called the horizontal velocity curve.
In streams of symmetrical section this is a curve symmetrical about
the centre line of the stream. The velocity varies little near the
centre of the stream, but very rapidly near the banks. In unsymmetrical
sections the greatest
velocity is at the point where the
stream is deepest, and the general
form of the horizontal velocity curve
is roughly similar to the section of
the stream.

§ 102. Curves or Contours of Equal
Velocity.—If velocities are observed
at a number of points at different
widths and depths in a stream, it is
possible to draw curves on the cross
section through points at which the
velocity is the same. These represent
contours of a solid, the volume
of which is the discharge of the
stream per second. Fig. 105 shows
the vertical and horizontal velocity curves and the contours of
equal velocity in a rectangular channel, from one of Bazin’s
gaugings.

§ 103. Experimental Observations on the Vertical Velocity Curve.—A
preliminary difficulty arises in observing the velocity at a given
point in a stream because the velocity rapidly varies, the motion
not being strictly steady. If an average of several velocities at the
same point is taken, or the average velocity for a sensible period of
time, this average is found to be constant. It may be inferred that
though the velocity at a point fluctuates about a mean value, the
fluctuations being due to eddying motions superposed on the general
motion of the stream, yet these fluctuations produce effects which
disappear in the mean of a series of observations and, in calculating
the volume of flow, may be disregarded.


	

	Fig. 105.


In the next place it is found that in most of the best observations
on the velocity in streams, the greatest velocity at any vertical is
found not at the surface but at some distance below it. In various
river gaugings the depth dz at the centre of the stream has been found
to vary from 0 to 0.3d.

§ 104. Influence of the Wind.—In the experiments on the Mississippi
the vertical velocity curve in calm weather was found to agree
fairly with a parabola, the greatest velocity being at 3⁄10ths of the
depth of the stream from the surface. With a wind blowing down
stream the surface velocity is increased, and the axis of the parabola
approaches the surface. On the contrary, with a wind blowing up
stream the surface velocity is diminished, and the axis of the parabola
is lowered, sometimes to half the depth of the stream. The
American observers drew from their observations the conclusion
that there was an energetic retarding action at the surface of a
stream like that due to the bottom and sides. If there were such
a retarding action the position of the filament of maximum velocity
below the surface would be explained.

It is not difficult to understand that a wind acting on surface
ripples or waves should accelerate or retard the surface motion of
the stream, and the Mississippi results may be accepted so far as
showing that the surface velocity of a stream is variable when the
mean velocity of the stream is constant. Hence observations of
surface velocity by floats or otherwise should only be made in very
calm weather. But it is very difficult to suppose that, in still air,
there is a resistance at the free surface of the stream at all analogous
to that at the sides and bottom. Further, in very careful experiments,
P. P. Boileau found the maximum velocity, though raised a
little above its position for calm weather, still at a considerable
distance below the surface, even when the wind was blowing down
stream with a velocity greater than that of the stream, and when
the action of the air must have been an accelerating and not a retarding
action. A much more probable explanation of the diminution
of the velocity at and near the free surface is that portions of water,
with a diminished velocity from retardation by the sides or bottom,
are thrown off in eddying masses and mingle with the rest of the
stream. These eddying masses modify the velocity in all parts of
the stream, but have their greatest influence at the free surface.
Reaching the free surface they spread out and remain there, mingling
with the water at that level and diminishing the velocity which would
otherwise be found there.

Influence of the Wind on the Depth at which the Maximum Velocity
is found.—In the gaugings of the Mississippi the vertical velocity
curve was found to agree well with a parabola having a horizontal
axis at some distance below the water surface, the ordinate of the
parabola at the axis being the maximum velocity of the section.
During the gaugings the force of the wind was registered on a scale
ranging from 0 for a calm to 10 for a hurricane. Arranging the
velocity curves in three sets—(1) with the wind blowing up stream,
(2) with the wind blowing down stream, (3) calm or wind blowing
across stream—it was found that an upstream wind lowered, and
a down-stream wind raised, the axis of the parabolic velocity curve.
In calm weather the axis was at 3⁄10ths of the total depth from the
surface for all conditions of the stream.

Let h′ be the depth of the axis of the parabola, m the hydraulic
mean depth, f the number expressing the force of the wind, which
may range from +10 to −10, positive if the wind is up stream,
negative if it is down stream. Then Humphreys and Abbot find
their results agree with the expression

h′ / m = 0.317 ± 0.06f.

Fig. 106 shows the parabolic velocity curves according to the
American observers for calm weather, and for an up- or down-stream
wind of a force represented by 4.


	

	Fig. 106.


It is impossible at present to give a theoretical rule for the vertical
velocity curve, but in very many gaugings it has been found that a
parabola with horizontal axis fits the observed results fairly well.
The mean velocity on any vertical in a stream varies from 0.85 to
0.92 of the surface velocity at that vertical, and on the average if v0
is the surface and vm the mean velocity at a vertical vm = 6⁄7v0, a result
useful in float gauging. On any vertical there is a point at which
the velocity is equal to the mean velocity, and if this point were
known it would be useful in gauging. Humphreys and Abbot in
the Mississippi found the mean velocity at 0.66 of the depth; G. H. L.
Hagen and H. Heinemann at 0.56 to 0.58 of the depth. The mean
of observations by various observers gave the mean velocity at from
0.587 to 0.62 of the depth, the average of all being almost exactly
0.6 of the depth. The mid-depth velocity is therefore nearly equal
to, but a little greater than, the mean velocity on a vertical. If
vmd is the mid-depth velocity, then on the average vm = 0.98vmd.

§ 105. Mean Velocity on a Vertical from Two Velocity Observations.—A.
J. C. Cunningham, in gaugings on the Ganges canal, found the
following useful results. Let v0 be the surface, vm the mean, and
vxd the velocity at the depth xd; then

vm = 1⁄4 (v0 + 3v2/3d )

= 1⁄2 (v.211d + v.789d ).

§ 106. Ratio of Mean to Greatest Surface Velocity, for the whole
Cross Section in Trapezoidal Channels.—It is often very important
to be able to deduce the mean velocity, and thence the discharge,
from observation of the greatest surface velocity. The simplest
method of gauging small streams and channels is to observe the
greatest surface velocity by floats, and thence to deduce the mean
velocity. In general in streams of fairly regular section the mean
velocity for the whole section varies from 0.7 to 0.85 of the greatest
surface velocity. For channels not widely differing from those
experimented on by Bazin, the expression obtained by him for the
ratio of surface to mean velocity may be relied on as at least a good
approximation to the truth. Let v0 be the greatest surface velocity,
vm the mean velocity of the stream. Then, according to Bazin,

vm = v0 − 25.4 √ (mi).

But

vm = c √ (mi),

where c is a coefficient, the values of which have been already given
in the table in § 98. Hence

vm = cv0 / (c + 25.4).



Values of Coefficient c/(c + 25.4) in the Formula vm = cv0/(c + 25.4).


	Hydraulic

Mean Depth

= m. 	Very

Smooth

Channels.

Cement. 	Smooth

Channels.

Ashlar or

Brickwork. 	Rough

Channels.

Rubble

Masonry. 	Very Rough

Channels.

Canals in

Earth. 	Channels

encumbered

with

Detritus.

	 0.25 	.83 	.79 	.69 	.51 	.42

	 0.5 	.84 	.81 	.74 	.58 	.50

	 0.75 	.84 	.82 	.76 	.63 	.55

	 1.0 	.85 	.. 	.77 	.65 	.58

	 2.0 	.. 	.83 	.79 	.71 	.64

	 3.0 	.. 	.. 	.80 	.73 	.67

	 4.0 	.. 	.. 	.81 	.75 	.70

	 5.0 	.. 	.. 	.. 	.76 	.71

	 6.0 	.. 	.84 	.. 	.77 	.72

	 7.0 	.. 	.. 	.. 	.78 	.73

	 8.0 	.. 	.. 	.. 	.. 	..

	 9.0 	.. 	.. 	.82 	.. 	.74

	10.0 	.. 	.. 	.. 	.. 	..

	15.0 	.. 	.. 	.. 	.79 	.75

	20.0 	.. 	.. 	.. 	.80 	.76

	30.0 	.. 	.. 	.82 	.. 	.77

	40.0 	.. 	.. 	.. 	.. 	..

	50.0 	.. 	.. 	.. 	.. 	..

	∞ 	.. 	.. 	.. 	.. 	.79




	

	Fig. 107.


§ 107. River Bends.—In rivers flowing in alluvial plains, the windings
which already exist tend to increase in curvature by the scouring
away of material from the outer bank and the deposition of detritus
along the inner bank. The sinuosities sometimes increase till a
loop is formed with only a narrow strip of land between the two
encroaching branches of the river. Finally a “cut off” may occur,
a waterway being opened through the strip of land and the loop
left separated from the
stream, forming a horseshoe
shaped lagoon or
marsh. Professor James
Thomson pointed out
(Proc. Roy. Soc., 1877,
p. 356; Proc. Inst. of
Mech. Eng., 1879, p. 456)
that the usual supposition
is that the water
tending to go forwards
in a straight line rushes
against the outer bank
and scours it, at the
same time creating deposits
at the inner bank.
That view is very far
from a complete account
of the matter, and Professor
Thomson gave a
much more ingenious
account of the action at
the bend, which he completely confirmed by experiment.


	

	Fig. 108.


When water moves round a circular curve under the action of
gravity only, it takes a motion like that in a free vortex. Its velocity
is greater parallel to the axis of the stream at the inner than at the
outer side of the bend. Hence the scouring at the outer side and
the deposit at the inner side of the bend are not due to mere difference
of velocity of flow in the general direction of the stream; but, in
virtue of the centrifugal force, the water passing round the bend
presses outwards, and the free surface in a radial cross section has
a slope from the inner side upwards to the outer side (fig. 108).
For the greater part of the water flowing in curved paths, this
difference of pressure produces no tendency to transverse motion.
But the water immediately
in contact
with the rough bottom
and sides of the
channel is retarded,
and its centrifugal
force is insufficient to
balance the pressure
due to the greater
depth at the outside
of the bend. It therefore
flows inwards towards the inner side of the bend, carrying
with it detritus which is deposited at the inner bank. Conjointly
with this flow inwards along the bottom and sides, the
general mass of water must flow outwards to take its place. Fig. 107
shows the directions of flow as observed in a small artificial stream,
by means of light seeds and specks of aniline dye. The lines CC
show the directions of flow immediately in contact with the sides
and bottom. The dotted line AB shows the direction of motion of
floating particles on the surface of the stream.

§ 108. Discharge of a River when flowing at different Depths.—When
frequent observations must be made on the flow of a river
or canal, the depth of which varies at different times, it is very
convenient to have to observe the depth only. A formula can be
established giving the flow in terms of the depth. Let Q be the
discharge in cubic feet per second; H the depth of the river in some
straight and uniform part. Then Q = aH + bH2, where the constants
a and b must be found by preliminary gaugings in different conditions
of the river. M. C. Moquerey found for part of the upper
Saône, Q = 64.7H + 8.2H2 in metric measures, or Q = 696H + 26.8H2
in English measures.

§ 109. Forms of Section of Channels.—The simplest form of section
for channels is the semicircular or nearly semicircular channel (fig.
109), a form now often adopted from the facility with which it can be
executed in concrete. It has the advantage that the rubbing surface
is less in proportion to the area than in any other form.


	

	Fig. 109.


Wooden channels or flumes, of which there are examples on a
large scale in America, are rectangular in section, and the same form
is adopted for wrought and cast-iron aqueducts. Channels built
with brickwork or masonry may be also rectangular, but they
are often trapezoidal, and are always so if the sides are pitched
with masonry laid dry. In a trapezoidal channel, let b (fig. 110)
be the bottom breadth, b0 the top breadth, d the depth, and let
the slope of the sides be n horizontal to 1 vertical. Then the area
of section is Ω = (b + nd) d = (b0 − nd) d, and the wetted perimeter
χ = b + 2d √ (n2 + 1).


	

	Fig. 110.


When a channel is simply excavated in earth it is always
originally trapezoidal, though it becomes more or less rounded in
course of time. The slope of the sides then depends on the
stability of the earth, a slope of 2 to 1 being the one most
commonly adopted.

Figs. 111, 112 show the form of canals excavated in earth, the
former being the section of a navigation canal and the latter the
section of an irrigation canal.

§ 110. Channels of Circular Section.—The following short table
facilitates calculations of the discharge with different depths of water
in the channel. Let r be the radius of the channel section; then
for a depth of water = κr, the hydraulic mean radius is μr and the
area of section of the waterway νr2, where κ, μ, and ν have the
following values:—


	Depth of water in

terms of radius 	κ = 	.01 	.05 	.10 	.15 	.20 	.25 	.30 	.35 	.40 	.45 	.50 	.55 	.60 	.65 	.70 	.75 	.80 	.85 	.90 	.95 	1.0

	Hydraulic mean depth

in terms of radius 	μ    = 	.00668 	.0321 	.0523 	.0963 	.1278 	.1574 	.1852 	.2142 	.242 	.269 	.293 	.320 	.343 	.365 	.387 	.408 	.429 	.449 	.466 	.484 	.500

	Waterway in terms of

square of radius 	ν    = 	.00189 	.0211 	.0598 	.1067 	.1651 	.228 	.294 	.370 	.450 	.532 	.614 	.709 	.795 	.885 	.979 	1.075 	1.175 	1.276 	1.371 	1.470 	1.571






	

	Fig. 111.—Scale 20 ft. = 1 in.



	

	Fig. 112.—Scale 80 ft. = 1 in.



	

	Fig. 113.


§ 111. Egg-Shaped Channels or Sewers.—In sewers for discharging
storm water and house drainage the volume of flow is extremely
variable; and there is a great liability for deposits to be left when
the flow is small, which are not removed during the short periods
when the flow is large. The sewer in consequence becomes choked.
To obtain uniform scouring action, the velocity of flow should be
constant or nearly so; a complete uniformity of velocity cannot be
obtained with any form of section suitable for sewers, but an approximation
to uniform velocity is obtained by making the sewers
of oval section. Various forms of oval have been suggested, the
simplest being one in
which the radius of the
crown is double the radius
of the invert, and the
greatest width is two-thirds
the height. The
section of such a sewer
is shown in fig. 113, the
numbers marked on the
figure being proportional
numbers.

§ 112. Problems on
Channels in which the
Flow is Steady and at
Uniform Velocity.—The
general equations given
in §§ 96, 98 are

ζ = α(1 + β/m);


(1)

ζv2/2g = mi;

(2)

Q = Ωv.

(3)

Problem I.—Given the transverse section of stream and discharge,
to find the slope. From the dimensions of the section
find Ω and m; from (1) find ζ, from (3) find v, and lastly from (2)
find i.

Problem II.—Given the transverse section and slope, to find the
discharge. Find v from (2), then Q from (3).

Problem III.—Given the discharge and slope, and either the
breadth, depth, or general form of the section of the channel, to
determine its remaining dimensions. This must generally be solved
by approximations. A breadth or depth or both are chosen, and
the discharge calculated. If this is greater than the given discharge,
the dimensions are reduced and the discharge recalculated.


	

	Fig. 114.


Since m lies generally between the limits m = d and m = 1⁄2d, where
d is the depth of the stream, and since, moreover, the velocity
varies as √ (m) so that an error in the value of m leads only to a much
less error in the value of the velocity calculated from it, we may
proceed thus. Assume a value for m, and calculate v from it.
Let v1 be this first approximation to v. Then Q/v1 is a first approximation
to Ω, say Ω1. With this value of Ω design the section of the
channel; calculate a second value for m; calculate from it a second
value of v, and from that a
second value for Ω. Repeat
the process till the successive
values of m approximately
coincide.

§ 113. Problem IV. Most
Economical Form of Channel
for given Side Slopes.—Suppose
the channel is to be
trapezoidal in section (fig. 114), and that the sides are to have a
given slope. Let the longitudinal slope of the stream be given,
and also the mean velocity. An infinite number of channels
could be found satisfying the foregoing conditions. To render
the problem determinate, let it be remembered that, since for
a given discharge Ω∞ √χ, other things being the same, the
amount of excavation will be least for that channel which has
the least wetted perimeter. Let d be the depth and b the bottom
width of the channel, and let the
sides slope n horizontal to 1 vertical
(fig. 114), then

Ω = (b + nd) d;

χ = b + 2d √ (n2 + 1).

Both Ω and χ are to be minima.
Differentiating, and equating to
zero.

(db/dd + n) d + b + nd = 0,

 db/dd + 2 √ (n2 + 1) = 0;

eliminating db/dd,

{n − 2√ (n2 + 1)} d + b + nd = 0;

 b = 2 {√ (n2 + 1) − n} d.

But

Ω / χ = (b + nd) d / {b + 2d √ (n2 + 1)}.

Inserting the value of b,

m = Ω/χ = {2d √ (n2 + 1) − nd} /
 {4d √ (n2 + 1) − 2nd} = 1⁄2 d.

That is, with given side slopes,
the section is least for a given
discharge when the hydraulic mean
depth is half the actual depth.

A simple construction gives the
form of the channel which fulfils
this condition, for it can be shown that when m = 1⁄2d the sides
of the channel are tangential to a semicircle drawn on the
water line.

Since

Ω / χ = 1⁄2 d,

therefore

Ω = 1⁄2 χd.

(1)

Let ABCD be the channel (fig. 115); from E the centre of AD drop
perpendiculars EF, EG, EH on the sides.

Let

AB = CD = a; BC = b; EF = EH = c; and EG = d.

Ω = area AEB + BEC + CED,

 = ac + 1⁄2 bd.

χ = 2a + b.

Putting these values in (1),

ac + 1⁄2 bd = (a + 1⁄2 b) d; and hence c = d.


	

	Fig. 115.



	

	Fig. 116.


That is, EF, EG, EH are all equal, hence a semicircle struck
from E with radius equal to the depth of the stream will pass
through F and H and be
tangential to the sides of
the channel.

To draw the channel,
describe a semicircle on
a horizontal line with
radius = depth of channel.
The bottom will be a
horizontal tangent of that
semicircle, and the sides tangents drawn at the required side
slopes.

The above result may be obtained thus (fig. 116):—

χ = b + 2d / sin β.

(1)

Ω = d (b + d cot β);

Ω/d = b + d cot β;

(2)

Ω/d2 = b/d + cot β.

(3)

From (1) and (2),

χ = Ω / d − d cot β + 2d / sin β.

This will be a minimum for

dχ / dd = Ω / d2 + cot β − 2 / sin β = 0,

or

Ω/d2 = 2 cosec. β − cot β.

(4)

or

d = √ {Ω sin β / (2 − cos β)}.

From (3) and (4),

b/d = 2 (1 − cos β) / sin β = 2 tan 1⁄2 β.



Proportions of Channels of Maximum Discharge for given Area and
Side Slopes. Depth of channel = d; Hydraulic mean depth = 1⁄2d;
Area of section = Ω.


	  	Inclination

of Sides to

Horizon. 	Ratio of

Side

Slopes. 	Area of

Section Ω. 	Bottom

Width. 	Top width =

twice length

of each Side

Slope.

	Semicircle 	.. 	.. 	1.571d2 	0 	2d

	Semi-hexagon 	60°    0′ 	3   : 5 	1.732d2 	1.155d 	2.310d

	Semi-square 	90°    0′ 	0   : 1 	2d2 	2d 	2d

	  	75°  58′ 	1   : 4 	1.812d2 	1.562d 	2.062d

	  	63°  26′ 	1   : 2 	1.736d2 	1.236d 	2.236d

	  	53°    8′ 	3   : 4 	1.750d2 	d 	2.500d

	  	45°    0′ 	1   : 1 	1.828d2 	0.828d 	2.828d

	  	38°  40′ 	11⁄4 : 1 	1.952d2 	0.702d 	3.202d

	  	33°  42′ 	11⁄2 : 1 	2.106d2 	0.606d 	3.606d

	  	29°  44′ 	13⁄4 : 1 	2.282d2 	0.532d 	4.032d

	  	26°  34′ 	2  : 1 	2.472d2 	0.472d 	4.472d

	  	23°  58′ 	21⁄4 : 1 	2.674d2 	0.424d 	4.924d

	  	21°  48′ 	21⁄2 : 1 	2.885d2 	0.385d 	5.385d

	  	19°  58′ 	23⁄4 : 1 	3.104d2 	0.354d 	5.854d

	  	18°  26′ 	3   : 1 	3.325d2 	0.325d 	6.325d

	Half the top width is the length of each side slope. The wetted

perimeter is the sum of the top and bottom widths.



§ 114. Form of Cross Section of Channel in which the Mean Velocity
is Constant with Varying Discharge.—In designing waste channels
from canals, and in some other cases, it is desirable that the mean
velocity should be restricted within narrow limits with very different
volumes of discharge. In channels of trapezoidal form the velocity
increases and diminishes with the discharge. Hence when the
discharge is large there is danger of erosion, and when it is small of
silting or obstruction by weeds. A theoretical form of section for
which the mean velocity would be constant can be found, and,
although this is not very suitable for practical purposes, it can be
more or less approximated to in actual channels.


	

	Fig. 117.


Let fig. 117 represent the cross section of the channel. From the
symmetry of the section, only half the channel need be considered.
Let obac be any section suitable for the minimum flow, and let it
be required to find the curve beg for the upper part of the channel
so that the mean velocity shall be constant. Take o as origin of
coordinates, and let de, fg be two levels of the water above ob.

Let ob = b/2; de = y, fg = y + dy, od = x, of = x + dx; eg = ds.

The condition to be satisfied is that

v = c √ (mi)

should be constant, whether the water-level is at ob, de, or fg. Consequently

m = constant = k

for all three sections, and can be found from the section obac. Hence
also


	Increment of section
	= 	y dx
	= k.

	Increment of perimeter 	ds


y2 dx2 = k2 ds2 = k2 (dx2 + dy2) and dx = k dy / √ (y2 − k2).

Integrating,

x = k logε {y + √ (y2 − k2)} + constant;

and, since y = b/2 when x = 0,

x = k logε [{y + √ (y2 − k2)} / {1⁄2 b + √ (1⁄4 b2 − k2) }].

Assuming values for y, the values of x can be found and the curve
drawn.

The figure has been drawn for a channel the minimum section of
which is a half hexagon of 4 ft. depth. Hence k = 2; b = 9.2; the
rapid flattening of the side slopes is remarkable.

Steady Motion of Water in Open Channels of Varying
Cross Section and Slope

§ 115. In every stream the discharge of which is constant, or may
be regarded as constant for the time considered, the velocity at
different places depends on the slope of the bed. Except at certain
exceptional points the velocity will be greater as the slope of the
bed is greater, and, as the velocity and cross section of the stream
vary inversely, the section of the stream will be least where the
velocity and slope are greatest. If in a stream of tolerably uniform
slope an obstruction such as a weir is built, that will cause an alteration
of flow similar to that of an alteration of the slope of the bed
for a greater or less distance above the weir, and the originally uniform
cross section of the stream will become a varied one. In such
cases it is often of much practical importance to determine the
longitudinal section of the stream.

The cases now considered will be those in which the changes of
velocity and cross section are gradual and not abrupt, and in which
the only internal work which needs to be taken into account is that
due to the friction of the stream bed, as in cases of uniform motion.
Further, the motion will be supposed to be steady, the mean velocity
at each given cross section remaining constant, though it varies from
section to section along the course of the stream.


	

	Fig. 118.


Let fig. 118 represent a longitudinal section of the stream, A0A1
being the water surface, B0B1 the stream bed. Let A0B0, A1B1 be
cross sections normal to the direction of flow. Suppose the mass
of water A0B0A1B1 comes in a short time θ to C0D0C1D1, and let the
work done on the mass be equated to its change of kinetic energy
during that period. Let l be the length A0A1 of the portion of the
stream considered, and z the fall, of surface level in that distance.
Let Q be the discharge of the stream per second.


	

	Fig. 119.


Change of Kinetic Energy.—At the end of the time θ there are as
many particles possessing the same velocities in the space C0D0A1B1
as at the beginning. The
change of kinetic energy is
therefore the difference of
the kinetic energies of
A0B0C0D0 and A1B1C1D1.

Let fig. 119 represent the
cross section A0B0, and let
ω be a small element of its
area at a point where the
velocity is v. Let Ω0 be the
whole area of the cross section and u0 the mean velocity for the
whole cross section. From the definition of mean velocity we have

u0 = Σ ωv / Ω0.

Let v = u0 + w, where w is the difference between the velocity at the
small element ω and the mean velocity. For the whole cross section,
Σωw = 0.

The mass of fluid passing through the element of section ω, in θ
seconds, is (G/g) ωvθ, and its kinetic energy is
(G/2g) ωv3θ. For the
whole section, the kinetic energy of the mass A0B0C0D0 passing in θ
seconds is

(Gθ / 2g) Σωv3 = (Gθ/2g) Σω (u03 + 3u02w + 3u02 + w3),

 = (Gθ / 2g) {u03Ω + Σωw2 (3u0 + w)}.

The factor 3u0 + w is equal to 2u0 + v, a quantity necessarily
positive. Consequently Σωv3 > Ω0u03, and consequently the kinetic
energy of A0B0C0D0 is greater than

(Gθ / 2g) Ω0u03 or (Gθ) / 2g) Qu02,

which would be its value if all the particles passing the section had
the same velocity u0. Let the kinetic energy be taken at

α (Gθ / 2g) Ω0u03 = α (Gθ / 2g) Qu02,

where α is a corrective factor, the value of which was estimated by
J. B. C. J. Bélanger at 1.1.6 Its precise value is not of great importance.

In a similar way we should obtain for the kinetic energy of
A1B1C1D1 the expression

α (Gθ / 2g) Ω1u13 = α (Gθ / 2g) Qu12,

where Ω1, u1 are the section and mean velocity at A1B1, and where a
may be taken to have the same value as before without any important
error.

Hence the change of kinetic energy in the whole mass A0B0A1B1
in θ seconds is

α (Gθ / 2g) Q (u12 − u02).

(1)

Motive Work of the Weight and Pressures.—Consider a small
filament a0a1 which comes in θ seconds to c0c1. The work done by
gravity during that movement is the same as if the portion a0c0 were
carried to a1c1. Let dQ θ be the volume of a0c0 or a1c1, and y0, y1 the
depths of a0, a1 from the surface of the stream. Then the volume

dQ θ or G dQ θ pounds falls through a vertical height z + y1 − y0, and
the work done by gravity is

G dQ θ (z + y1 − y0).

Putting pa for atmospheric pressure, the whole pressure per unit of
area at a0 is Gy0 + pa, and that at a1 is −(Gy1 + pa). The work of
these pressures is

G (y0 + pa/G − y1 − pa/G) dQ θ = G (y0 − y1) dQ θ.

Adding this to the work of gravity, the whole work is GzdQθ; or,
for the whole cross section,

GzQθ.

(2)

Work expended in Overcoming the Friction of the Stream Bed.—Let
A′B′, A″B″ be two cross sections at distances s and s + ds from
A0B0. Between these sections the velocity may be treated as uniform,
because by hypothesis the changes of velocity from section
to section are gradual. Hence, to this short length of stream the
equation for uniform motion is applicable. But in that case the
work in overcoming the friction of the stream bed between A′B′ and
A″B″ is

GQθζ (u2 / 2g) (χ / Ω) ds,

where u, χ, Ω are the mean velocity, wetted perimeter, and section
at A′B′. Hence the whole work lost in friction from A0B0 to A1B1
will be

GQθ ∫10 ζ (u2 / 2g) (χ / Ω) ds.

(3)

Equating the work given in (2) and (3) to the change of kinetic
energy given in (1),

α (GQθ / 2g) (u12 − u02) = GQzθ − GQθ ∫10 ζ (u2 / 2g) (χ / Ω) ds;

∴ z = α (u12 − u02) / 2g + ∫10 ζ (u2 / 2g) (χ / Ω) ds.


	

	Fig. 120.


§ 116. Fundamental Differential Equation of Steady Varied Motion.—Suppose
the equation just found to be applied to an indefinitely
short length ds of the stream, limited by the end sections ab, a1b1,
taken for simplicity normal to the stream bed (fig. 120). For that
short length of stream the fall of surface level, or difference of level of
a and a1, may be written dz. Also, if we write u for u0, and u + du for
u1, the term (u02 − u12)/2g becomes udu/g. Hence the equation
applicable to an indefinitely short length of the stream is

dz = u du/g + (χ/Ω) ζ (u2/2g) ds.

(1)

From this equation some general conclusions may be arrived at as
to the form of the longitudinal section of the stream, but, as the
investigation is somewhat complicated, it is convenient to simplify
it by restricting the conditions of the problem.

Modification of the Formula for the Restricted Case of a Stream
flowing in a Prismatic Stream Bed of Constant Slope.—Let i be
the constant slope of the bed. Draw ad parallel to the bed, and ac
horizontal. Then dz is sensibly equal to a′c. The depths of the
stream, h and h + dh, are sensibly equal to ab and a′b′, and therefore
dh = a′d. Also cd is the fall of the bed in the distance ds, and is
equal to ids. Hence

dz = a′c = cd − a′d = i ds − dh.

(2)

Since the motion is steady—

Q = Ωu = constant.

Differentiating,

Ω du + u dΩ = 0;

∴ du = −u dΩ/Ω.

Let x be the width of the stream, then dΩ = xdh very nearly. Inserting
this value,

du = −(ux / Ω) dh.

(3)

Putting the values of du and dz found in (2) and (3) in equation (1),

i ds − dh = −(u2x / gΩ) dh + (χ / Ω) ζ (u2 / 2g) ds.

dh/ds = {i − (χ/Ω) ζ (u2/2g)} / {1 − (u2/g) (x/Ω)}.

(4)

Further Restriction to the Case of a Stream of Rectangular Section
and of Indefinite Width.—The equation might be discussed in the
form just given, but it becomes a little simpler if restricted in the
way just stated. For, if the stream is rectangular, χh = Ω, and if χ
is large compared with h, Ω/χ = xh/x = h nearly. Then equation (4)
becomes

dh/ds = i (1 − ζu2 / 2gih) / (1 − u2/gh).

(5)

§ 117. General Indications as to the Form of Water Surface furnished
by Equation (5).—Let A0A1 (fig. 121) be the water surface,
B0B1 the bed in a longitudinal section of the stream, and ab any
section at a distance s from B0, the depth ab being h. Suppose
B0B1, B0A0 taken as rectangular coordinate axes, then dh/ds is the
trigonometric tangent of the angle which the surface of the stream
at a makes with the axis B0B1. This tangent dh/ds will be positive,
if the stream is increasing in depth in the direction B0B1; negative,
if the stream is diminishing in depth from B0 towards B1. If dh/ds = 0,
the surface of the stream is parallel to the bed, as in cases of uniform
motion. But from equation (4)

dh/ds = 0, if i − (χ/Ω) ζ (u2/2g) = 0;

∴ ζ (u2/2g) = (Ω/χ) i = mi,

which is the well-known general equation for uniform motion, based
on the same assumptions as the equation for varied steady motion
now being considered. The case of uniform motion is therefore a
limiting case between two different kinds of varied motion.


	

	Fig. 121.


Consider the possible changes of value of the fraction

(1 − ζu2 / 2gih) / (1 − u2 / gh).

As h tends towards the limit 0, and consequently u is large, the
numerator tends to the limit −∞. On the other hand if h = ∞, in
which case u is small, the numerator becomes equal to 1. For a
value H of h given by the equation

1 − ζu2 / 2giH = 0,

 H = ζu2 / 2gi,

we fall upon the case of uniform motion. The results just stated
may be tabulated thus:—

For h = 0, H, > H, ∞,

the numerator has the value −∞, 0, > 0, 1.

Next consider the denominator. If h becomes very small, in which
case u must be very large, the denominator tends to the limit −∞.
As h becomes very large and u consequently very small, the denominator
tends to the limit 1. For h = u2/g, or u = √ (gh), the
denominator becomes zero. Hence, tabulating these results as
before:—

For h = 0, u2/g, > u2/g, ∞,

the denominator becomes −∞, 0, > 0, 1.


	

	Fig. 122.


§ 118. Case 1.—Suppose h > u2/g, and also h > H, or the depth
greater than that corresponding to uniform motion. In this case
dh/ds is positive, and the stream increases in depth in the direction
of flow. In fig. 122 let B0B1 be the bed, C0C1 a line parallel to the
bed and at a height above it equal to H. By hypothesis, the surface
A0A1 of the stream is above C0C1, and it has just been shown that the
depth of the stream increases from B0 towards B1. But going up
stream h approaches more and more nearly the value H, and therefore
dh/ds approaches the limit 0, or the surface of the stream is
asymptotic to C0C1. Going down stream h increases and u diminishes,
the numerator and denominator of the fraction (1 − ζu2/2gih) / (1 − u2/gh)
both tend towards the limit 1, and dh/ds to the limit i. That is,
the surface of the stream tends to become asymptotic to a horizontal
line D0D1.

The form of water surface here discussed is produced when the
flow of a stream originally uniform is altered by the construction of
a weir. The raising of the water surface above the level C0C1 is
termed the backwater due to the weir.


	

	Fig. 123.

	

	Fig. 124.


§ 119. Case 2.—Suppose h > u2/g, and also h < H. Then dh/ds is

negative, and the stream is diminishing in depth in the direction of
flow. In fig. 123 let B0B1 be the stream bed as before; C0C1 a line
drawn parallel to B0B1 at a height above it equal to H. By hypothesis
the surface A0A1 of the stream is below C0C1, and the depth has
just been shown to
diminish from B0
towards B1. Going
up stream h approaches
the limit
H, and dh/ds tends
to the limit zero.
That is, up stream
A0A1 is asymptotic
to C0C1. Going down
stream h diminishes
and u increases; the
inequality h > u2/g diminishes; the denominator of the fraction
(1 − ζu2/2gih) / (1 − u2/gh) tends to the limit zero, and consequently
dh/ds tends to ∞. That is, down stream A0A1 tends
to a direction perpendicular to the bed. Before, however, this
limit was reached the assumptions on which the general equation is
based would cease to be even approximately true, and the equation
would cease to be applicable. The filaments would have a relative
motion, which would make the influence of internal friction in the
fluid too important to be neglected. A stream surface of this form
may be produced
if there
is an abrupt
fall in the bed
of the stream
(fig. 124).

On the Ganges
canal, as originally
constructed,
there
were abrupt
falls precisely
of this kind,
and it appears
that the lowering of the water surface and increase of velocity
which such falls occasion, for a distance of some miles up stream,
was not foreseen. The result was that, the velocity above the
falls being greater than was intended, the bed was scoured and
considerable damage was done to the works. “When the canal
was first opened the water was allowed to pass freely over the
crests of the overfalls, which were laid on the level of the bed
of the earthen channel; erosion of bed and sides for some miles
up rapidly followed, and it soon became apparent that means
must be adopted for raising the surface of the stream at
those points (that is, the crests of the falls). Planks were accordingly
fixed in the grooves above the bridge arches, or temporary
weirs were formed over which the water was allowed to fall; in some
cases the surface of the water was thus raised above its normal
height, causing a backwater in the channel above” (Crofton’s
Report on the Ganges Canal, p. 14). Fig. 125 represents in an exaggerated
form what probably occurred, the diagram being intended
to represent some miles’ length of the canal bed above the fall.
AA parallel to the canal bed is the level corresponding to uniform
motion with the intended velocity of the canal. In consequence of
the presence of the ogee fall, however, the water surface would take
some such form as BB, corresponding to Case 2 above, and the
velocity would be greater than the intended velocity, nearly in the
inverse ratio of the actual to the intended depth. By constructing
a weir on the crest of the fall, as shown by dotted lines, a new water
surface CC corresponding to Case 1 would be produced, and by
suitably choosing the height of the weir this might be made to agree
approximately with the intended level AA.


	

	Fig. 125.


§ 120. Case 3.—Suppose a stream flowing uniformly with a depth
h < u2/g. For a stream in uniform motion ζu2/2g = mi, or if the
stream is of indefinitely great width, so that m = H, then ζu2/2g = iH,
and H = ζu2/2gi. Consequently the condition stated above involves
that

ζu2 / 2gi < u2 / g, or that i > ζ/2.

If such a stream is interfered with by the construction of a weir
which raises its level, so that its depth at the weir becomes h1 > u2/g,
then for a portion of the stream the depth h will satisfy the conditions
h < u2/g and h > H, which are not the same as those assumed
in the two previous cases. At some point of the stream above the
weir the depth h becomes equal to u2/g, and at that point dh/ds
becomes infinite, or the surface of the stream is normal to the bed.
It is obvious that at that point the influence of internal friction will
be too great to be neglected, and the general equation will cease to
represent the true conditions of the motion of the water. It is known
that, in cases such as this, there occurs an abrupt rise of the free
surface of the stream, or a standing wave is formed, the conditions
of motion in which will be examined presently.

It appears that the condition necessary to give rise to a standing
wave is that i > ζ/2. Now ζ depends for different channels on the
roughness of the channel and its hydraulic mean depth. Bazin
calculated the values of ζ for channels of different degrees of roughness
and different depths given in the following table, and the corresponding
minimum values of i for which the exceptional case of the
production of a standing wave may occur.


	Nature of Bed of Stream. 	Slope below

which a Standing

Wave is

impossible in

feet peer foot. 	Standing Wave Formed.

	Slope in feet

per foot. 	Least Depth

in feet.

	Very smooth cemented surface 	0.00147 	0.002 	0.262

	0.003 	 .098

	0.004 	 .065

	Ashlar or brickwork 	0.00186 	0.003 	 .394

	0.004 	 .197

	0.006 	 .098

	Rubble masonry 	0.00235 	0.004 	1.181

	0.006 	 .525

	0.010 	 .262

	Earth 	0.00275 	0.006 	3.478

	0.010 	1.542

	0.015 	 .919



Standing Waves

§ 121. The formation of a standing wave was first observed by
Bidone. Into a small rectangular masonry channel, having a slope
of 0.023 ft. per foot, he admitted water till it flowed uniformly with
a depth of 0.2 ft. He then placed a plank across the stream which
raised the level just above the obstruction to 0.95 ft. He found that
the stream above the obstruction was sensibly unaffected up to a
point 15 ft. from it. At that point the depth suddenly increased
from 0.2 ft. to 0.56 ft. The velocity of the stream in the part unaffected
by the obstruction was 5.54 ft. per second. Above the point
where the abrupt change of depth occurred u2 = 5.542 = 30.7, and
gh = 32.2 × 0.2 = 6.44; hence u2 was > gh. Just below the abrupt
change of depth u = 5.54 × 0.2/0.56 = 1.97; u2 = 3.88; and gh =
32.2 × 0.56 = 18.03; hence at this point u2 < gh. Between these two
points, therefore, u2 = gh; and the condition for the production of a
standing wave occurred.


	

	Fig. 126.


The change of level at a standing wave may be found thus. Let
fig. 126 represent the longitudinal section of a stream and ab, cd
cross sections normal to the bed, which for the short distance considered
may be assumed horizontal. Suppose the mass of water
abcd to come to a′b′c′d′ in a short time t; and let u0, u1 be the
velocities at ab and cd, Ω0, Ω1 the areas of the cross sections. The force
causing change of momentum in the mass abcd estimated horizontally
is simply the difference of the pressures on ab and cd. Putting
h0, h1 for the depths of the centres of gravity of ab and cd measured
down from the free water surface, the force is G (h0Ω0 − h1Ω1) pounds,
and the impulse in t seconds is G (h0Ω0 − h1Ω1) t second pounds.
The horizontal change of momentum is the difference of the momenta
of cdc′d′ and aba′b′; that is,

(G/g) (Ω1u12 − Ω0u02) t.



Hence, equating impulse and change of momentum,

G (h0Ω0 − h1Ω1) t = (G/g) (Ω1u12 − Ω0u02) t;

∴ h0Ω0 − h1Ω1 = (Ω1u12 − Ω0u02) / g.


(1)

For simplicity let the section be rectangular, of breadth B and
depths H0 and H1, at the two cross sections considered; then
h0 = 1⁄2H0, and h1 = 1⁄2H1. Hence

H02 − H12 = (2/g) (H1u12 − H0u02).

But, since Ω0u0 = Ω1u1, we have

u12 = u02H02 / H12,

H02 − H12 = (2u02/g) (H02/H1 − H0).

(2)

This equation is satisfied if H0 = H1, which corresponds to the case
of uniform motion. Dividing by H0 − H1, the equation becomes

(H1/H0) (H0 + H1) = 2u02 / g;

(3)

∴ H1 = √ (2u02H0 / g + 1⁄4 H02) − 1⁄2 H0.

(4)

In Bidone’s experiment u0 = 5.54, and H0 = 0.2. Hence H1 = 0.52,
which agrees very well with the observed height.


	

	Fig. 127.


§ 122. A standing wave is frequently produced at the foot of
a weir. Thus in the ogee falls originally constructed on the Ganges
canal a standing wave was observed as shown in fig. 127. The water
falling over the weir crest A acquired a very high velocity on the
steep slope AB, and the section of the stream at B became very
small. It easily happened, therefore, that at B the depth h < u2/g.
In flowing along the rough apron of the weir the velocity u diminished
and the depth h increased. At a point C, where h became equal to
u2/g, the conditions for producing the standing wave occurred.
Beyond C the free surface abruptly rose to the level corresponding to
uniform motion with the assigned slope of the lower reach of the
canal.


	

	Fig. 128.


A standing wave is sometimes formed on the down stream side of
bridges the piers of which obstruct the flow of the water. Some
interesting cases of this kind are described in a paper on the “Floods
in the Nerbudda Valley” in the Proc. Inst. Civ. Eng. vol. xxvii.
p. 222, by A. C. Howden. Fig. 128 is compiled from the data given
in that paper. It represents the section of the stream at pier 8 of
the Towah Viaduct,
during the flood of 1865.
The ground level is not
exactly given by Howden,
but has been inferred
from data given
on another drawing. The
velocity of the stream
was not observed, but
the author states it was
probably the same as at
the Gunjal river during
a similar flood, that is
16.58 ft. per second.
Now, taking the depth
on the down stream face
of the pier at 26 ft., the
velocity necessary for the
production of a standing
wave would be u = √ (gh)
= √ (32.2 × 26) = 29 ft.
per second nearly. But
the velocity at this
point was probably from Howden’s statements 16.58 × 40⁄26 = 25.5
ft. per second, an agreement as close as the approximate character of the
data would lead us to expect.

XI. ON STREAMS AND RIVERS

§ 123. Catchment Basin.—A stream or river is the channel for the
discharge of the available rainfall of a district, termed its catchment
basin. The catchment basin is surrounded by a ridge or watershed
line, continuous except at the point where the river finds an outlet.
The area of the catchment basin may be determined from a suitable
contoured map on a scale of at least 1 in 100,000. Of the whole rainfall
on the catchment basin, a part only finds its way to the stream.
Part is directly re-evaporated, part is absorbed by vegetation, part
may escape by percolation into neighbouring districts. The following
table gives the relation of the average stream discharge to the
average rainfall on the catchment basin (Tiefenbacher).


	  	Ratio of average

Discharge to

average Rainfall. 	Loss by Evaporation,

&c., in per cent of

total Rainfall.

	Cultivated land and spring-forming declivities. 	 3 to .33 	67 to 70

	Wooded hilly slopes. 	.35 to .45 	55 to 65

	Naked unfissured mountains 	.55 to .60 	40 to 45



§ 124. Flood Discharge.—The flood discharge can generally only be
determined by examining the greatest height to which floods have
been known to rise. To produce a flood the rainfall must be heavy
and widely distributed, and to produce a flood of exceptional height
the duration of the rainfall must be so great that the flood waters
of the most distant affluents reach the point considered, simultaneously
with those from nearer points. The larger the catchment
basin the less probable is it that all the conditions tending to produce
a maximum discharge should simultaneously occur. Further,
lakes and the river bed itself act as storage reservoirs during the rise
of water level and diminish the rate of discharge, or serve as flood
moderators. The influence of these is often important, because very
heavy rain storms are in most countries of comparatively short
duration. Tiefenbacher gives the following estimate of the flood
discharge of streams in Europe:—


	  	Flood discharge of Streams

per Second per Square Mile

of Catchment Basin.

	In flat country 	8.7 to 12.5 	cub. ft.

	In hilly districts 	17.5 to 22.5 	”

	In moderately mountainous districts 	36.2 to 45.0 	”

	In very mountainous districts 	50.0 to 75.0 	”



It has been attempted to express the decrease of the rate of flood
discharge with the increase of extent of the catchment basin by
empirical formulae. Thus Colonel P. P. L. O’Connell proposed the
formula y = M √ x, where M is a constant called the modulus of the
river, the value of which depends on the amount of rainfall, the
physical characters of the basin, and the extent to which the floods
are moderated by storage of the water. If M is small for any given
river, it shows that the rainfall is small, or that the permeability or
slope of the sides of the valley is such that the water does not drain
rapidly to the river, or that lakes and river bed moderate the rise of
the floods. If values of M are known for a number of rivers, they
may be used in inferring the probable discharge of other similar rivers.
For British rivers M varies from 0.43 for a small stream draining
meadow land to 37 for the Tyne. Generally it is about 15 or 20.
For large European rivers M varies from 16 for the Seine to 67.5 for
the Danube. For the Nile M = 11, a low value which results from the
immense length of the Nile throughout which it receives no affluent,
and probably also from the influence of lakes. For different tributaries
of the Mississippi M varies from 13 to 56. For various Indian
rivers it varies from 40 to 303, this variation being due to the great
variations of rainfall, slope and character of Indian rivers.

In some of the tank projects in India, the flood discharge has been
calculated from the formula D = C3√ n2, where D is the discharge in
cubic yards per hour from n square miles of basin. The constant C
was taken = 61,523 in the designs for the Ekrooka tank, = 75,000 on
Ganges and Godavery works, and = 10,000 on Madras works.


	

	Fig. 129.

	

	Fig. 130.


§ 125. Action of a Stream on its Bed.—If the velocity of a stream
exceeds a certain limit, depending on its size, and on the size, heaviness,
form and coherence of the
material of which its bed is composed,
it scours its bed and
carries forward the materials.
The quantity of material which
a given stream can carry in
suspension depends on the size
and density of the particles in
suspension, and is greater as
the velocity of the stream is greater. If in one part of its course the
velocity of a stream is great enough to scour the bed and the water
becomes loaded with silt, and in a subsequent part of the river’s
course the velocity is diminished, then part of the transported
material must be deposited. Probably deposit and scour go on
simultaneously over the whole river bed, but in some parts the rate
of scour is in excess of
the rate of deposit, and
in other parts the rate
of deposit is in excess
of the rate of scour.
Deep streams appear to
have the greatest scouring
power at any given
velocity. It is possible
that the difference is
strictly a difference of
transporting, not of scouring action. Let fig. 129 represent a section of
a stream. The material lifted at a will be diffused through the mass of
the stream and deposited at different distances down stream. The
average path of a particle lifted at a will be some such curve as abc,
and the average distance of transport each time a particle is lifted

will be represented by ac. In a deeper stream such as that in fig.
130, the average height to which particles are lifted, and, since the
rate of vertical fall through the water may be assumed the same as
before, the average distance a′c′ of transport will be greater. Consequently,
although the scouring action may be identical in the two
streams, the velocity of transport of material down stream is greater
as the depth of the stream is greater. The effect is that the deep
stream excavates its bed more rapidly than the shallow stream.

§ 126. Bottom Velocity at which Scour commences.—The following
bottom velocities were determined by P. L. G. Dubuat to be the
maximum velocities consistent with stability of the stream bed for
different materials.

Darcy and Bazin give, for the relation of the mean velocity vm
and bottom velocity vb.

vm = vb + 10.87 √ (mi).

But

√ mi = vm √ (ζ / 2g);

∴ vm = vb / (1 − 10.87 √ (ζ / 2g)).

Taking a mean value for ζ, we get

vm = 1.312 vb,

and from this the following values of the mean velocity are
obtained:—


	  	Bottom Velocity

= vb. 	Mean Velocity

= vm.

	1. Soft earth 	 0.25 	 .33

	2. Loam 	 0.50 	 .65

	3. Sand 	 1.00 	 1.30

	4. Gravel 	 2.00 	 2.62

	5. Pebbles 	 3.40 	 4.46

	6. Broken stone, flint 	 4.00 	 5.25

	7. Chalk, soft shale 	 5.00 	 6.56

	8. Rock in beds 	 6.00 	 7.87

	9. Hard rock. 	10.00 	13.12



The following table of velocities which should not be exceeded
in channels is given in the Ingenieurs Taschenbuch of the Verein
“Hütte”:—


	  	Surface

Velocity. 	Mean

Velocity. 	Bottom

Velocity.

	Slimy earth or brown clay 	 .49 	 .36 	 .26

	Clay 	 .98 	 .75 	 .52

	Firm sand 	 1.97 	 1.51 	 1.02

	Pebbly bed 	 4.00 	 3.15 	 2.30

	Boulder bed 	 5.00 	 4.03 	 3.08

	Conglomerate of slaty fragments 	 7.28 	 6.10 	 4.90

	Stratified rocks 	 8.00 	 7.45 	 6.00

	Hard rocks 	14.00 	12.15 	10.36



§ 127. Regime of a River Channel.—A river channel is said to be in
a state of regime, or stability, when it changes little in draught or
form in a series of years. In some rivers the deepest part of the
channel changes its position perpetually, and is seldom found in the
same place in two successive years. The sinuousness of the river
also changes by the erosion of the banks, so that in time the position
of the river is completely altered. In other rivers the change from
year to year is very small, but probably the regime is never perfectly
stable except where the rivers flow over a rocky bed.


	

	Fig. 131.


If a river had a constant discharge it would gradually modify its
bed till a permanent regime was established. But as the volume
discharged is constantly changing, and therefore
the velocity, silt is deposited when the velocity
decreases, and scour goes on when the velocity
increases in the same place. When the scouring
and silting are considerable, a perfect balance
between the two is rarely established, and hence
continual variations occur in the form of the river
and the direction of its currents. In other cases,
where the action is less violent, a tolerable balance may be established,
and the deepening of the bed by scour at one time is compensated by
the silting at another. In that case the general regime is permanent,
though alteration is constantly going on. This is more likely to
happen if by artificial means the erosion of the banks is prevented.
If a river flows in soil incapable of resisting its tendency to scour
it is necessarily sinuous (§ 107), for the slightest deflection of the
current to either side begins an erosion which increases progressively
till a considerable bend is formed. If such a river is
straightened it becomes sinuous again unless its banks are protected
from scour.

§ 128. Longitudinal Section of River Bed.—The declivity of rivers
decreases from source to mouth. In their higher parts rapid and
torrential, flowing over beds of gravel or boulders, they enlarge in
volume by receiving affluent streams, their slope diminishes, their
bed consists of smaller materials, and finally they reach the sea.
Fig. 131 shows the length in miles, and the surface fall in feet per
mile, of the Tyne and its tributaries.

The decrease of the slope is due to two causes. (1) The action of
the transporting power of the water, carrying the smallest debris
the greatest distance, causes the bed to be less stable near the mouth
than in the higher parts of the river; and, as the river adjusts its
slope to the stability of the bed by scouring or increasing its sinuousness
when the slope is too great, and by silting or straightening its
course if the slope is too small, the decreasing stability of the bed
would coincide with a decreasing slope. (2) The increase of volume
and section of the river leads to a decrease of slope; for the larger
the section the less slope is necessary to ensure a given velocity.


	

	Fig. 132.


The following investigation, though it relates to a purely arbitrary
case, is not without interest. Let it be assumed, to make the conditions
definite—(1) that a river flows over a bed of uniform resistance
to scour, and let it be further assumed that to maintain stability
the velocity of the river in these circumstances is constant from
source to mouth; (2) suppose the sections of the river at all points
are similar, so that, b being the breadth of the river at any point, its
hydraulic mean depth is ab and its section is cb2, where a and c are
constants applicable to all parts of the river; (3) let us further assume
that the discharge increases uniformly in consequence of the supply
from affluents, so that, if l is the length of the river from its source to
any given point, the
discharge there will be
kl, where k is another
constant applicable to
all points in the course
of the river.

Let AB (fig. 132) be
the longitudinal section
of the river, whose
source is at A; and
take A for the origin of
vertical and horizontal coordinates. Let C be a point whose ordinates
are x and y, and let the river at C have the breadth b, the slope i,
and the velocity v.

Since velocity × area of section = discharge, vcb2 = kl, or b = √ (kl/cv).

Hydraulic mean depth = ab = a √ (kl/cv).

But, by the ordinary formula for the flow of rivers, mi = ζv2;

∴ i = ζv2 / m = (ζv5/2 / a) √ (c / kl).

But i is the tangent of the angle which the curve at C makes with
the axis of X, and is therefore = dy/dx. Also, as the slope is small,
l = AC = AD = x nearly.

∴ dy/dx = (ζv5/2 / a) √ (c / kx);

and, remembering that v is constant,

y = (2ζv5/2 / a) √ (cx / k);

or

y2 = constant × x;

so that the curve is a common parabola, of which the axis is horizontal
and the vertex at the source. This may be considered an
ideal longitudinal section, to which actual rivers approximate
more or less, with exceptions due to the varying
hardness of their beds, and the irregular manner in
which their volume increases.

§ 129. Surface Level of River.—The surface level of a
river is a plane changing constantly in position from
changes in the volume of water discharged, and more
slowly from changes in the river bed, and the circumstances
affecting the drainage into the river.

For the purposes of the engineer, it is important to
determine (1) the extreme low water level, (2) the
extreme high water or flood level, and (3) the highest
navigable level.

1. Low Water Level cannot be absolutely known,
because a river reaches its lowest level only at rare intervals,
and because alterations in the cultivation of the
land, the drainage, the removal of forests, the removal
or erection of obstructions in the river bed, &c., gradually
alter the conditions of discharge. The lowest level
of which records can be found is taken as the conventional
or approximate low water level, and allowance is
made for possible changes.

2. High Water or Flood Level.—The engineer assumes as the highest
flood level the highest level of which records can be obtained. In
forming a judgment of the data available, it must be remembered that
the highest level at one point of a river is not always simultaneous

with the attainment of the highest level at other points, and that
the rise of a river in flood is very different in different parts of its
course. In temperate regions, the floods of rivers seldom rise more
than 20 ft. above low-water level, but in the tropics the rise of floods
is greater.

3. Highest Navigable Level.—When the river rises above a certain
level, navigation becomes difficult from the increase of the velocity
of the current, or from submersion of the tow paths, or from the headway
under bridges becoming insufficient. Ordinarily the highest
navigable level may be taken to be that at which the river begins to
overflow its banks.

§ 130. Relative Value of Different Materials for Submerged Works.—That
the power of water to remove and transport different materials
depends on their density has an important bearing on the selection
of materials for submerged works. In many cases, as in the aprons
or floorings beneath bridges, or in front of locks or falls, and in the
formation of training walls and breakwaters by pierres perdus,
which have to resist a violent current, the materials of which the
structures are composed should be of such a size and weight as to
be able individually to resist the scouring action of the water. The
heaviest materials will therefore be the best; and the different value
of materials in this respect will appear much more striking, if it is
remembered that all materials lose part of their weight in water.
A block whose volume is V cubic feet, and whose density in air is
w ℔ per cubic foot, weighs in air wV ℔, but in water only (w—62.4)
V ℔.


	  	Weight of a Cub. Ft. in ℔.

	In Air. 	In Water.

	Basalt 	187.3 	124.9

	Brick 	130.0 	 67.6

	Brickwork 	112.0 	 49.6

	Granite and limestone 	170.0 	107.6

	Sandstone 	144.0 	 81.6

	Masonry 	116-144 	53.6-81.6



§ 131. Inundation Deposits from a River.—When a river carrying
silt periodically overflows its banks, it deposits silt over the area
flooded, and gradually raises the surface of the country. The silt is
deposited in greatest abundance where the water first leaves the
river. It hence results that the section of the country assumes a
peculiar form, the river flowing in a trough along the crest of a ridge,
from which the land slopes downwards on both sides. The silt
deposited from the water forms two wedges, having their thick ends
towards the river (fig. 133).


	

	Fig. 133.


This is strikingly the case with the Mississippi, and that river is
now kept from flooding immense areas by artificial embankments or
levees. In India, the term deltaic segment is sometimes applied to
that portion of a river running through deposits formed by inundation,
and having this characteristic section. The irrigation of the
country in this case is very easy; a comparatively slight raising of
the river surface by a weir or annicut gives a command of level
which permits the water to be conveyed to any part of the district.

§ 132. Deltas.—The name delta was originally given to the Δ-shaped
portion of Lower Egypt, included between seven branches of
the Nile. It is now given to the whole of the alluvial tracts round
river mouths formed by deposition of sediment from the river, where
its velocity is checked on its entrance to the sea. The characteristic
feature of these alluvial deltas is that the river traverses them, not
in a single channel, but in two or many bifurcating branches. Each
branch has a tract of the delta under its influence, and gradually
raises the surface of that tract, and extends it seaward. As the delta
extends itself seaward, the conditions of discharge through the
different branches change. The water finds the passage through
one of the branches less obstructed than through the others; the
velocity and scouring action in that branch are increased; in the
others they diminish. The one channel gradually absorbs the whole
of the water supply, while the other branches silt up. But as the
mouth of the new main channel extends seaward the resistance increases
both from the greater length of the channel and the formation
of shoals at its mouth, and the river tends to form new bifurcations
AC or AD (fig. 134), and one of these may in time become the main
channel of the river.

§ 133. Field Operations preliminary to a Study of River Improvement.—There
are required (1) a plan of the river, on which the
positions of lines of levelling and cross sections are marked; (2) a
longitudinal section and numerous cross sections of the river; (3) a
series of gaugings of the discharge at different points and in different
conditions of the river.

Longitudinal Section.—This requires to be carried out with great
accuracy. A line of stakes is planted, following the sinuosities of the
river, and chained and levelled. The cross sections are referred to
the line of stakes, both as to position and direction. The determination
of the surface slope is very difficult, partly from its extreme
smallness, partly from oscillation of the water. Cunningham recommends
that the slope be taken in a length of 2000 ft. by four simultaneous
observations, two on each side of the river.


	

	Fig. 134.


§ 134. Cross Sections—A stake is planted flush with the water, and
its level relatively to some point on the line of levels is determined.
Then the depth of the water is determined at a series of points (if
possible at uniform distances) in a line starting from the stake and
perpendicular to the thread of the stream. To obtain these, a wire
may be stretched across with equal distances marked on it by hanging
tags. The depth at each of these tags may be obtained by a
light wooden staff, with a disk-shaped shoe 4 to 6 in. in diameter.
If the depth is great, soundings may be taken by a chain and weight.
To ensure the wire being perpendicular to the thread of the stream,
it is desirable to stretch two other wires similarly graduated, one
above and the other below, at a distance of 20 to 40 yds. A
number of floats being then thrown in, it is observed whether they
pass the same graduation on each wire.


	

	Fig. 135.


For large and rapid rivers the cross section is obtained by sounding
in the following way. Let AC (fig. 135) be the line on which soundings
are required. A base line AB is measured out at right angles
to AC, and ranging staves are set up at AB and at D in line with AC.
A boat is allowed to drop down stream, and, at the moment it comes
in line with AD, the lead is
dropped, and an observer in the
boat takes, with a box sextant,
the angle AEB subtended by
AB. The sounding line may
have a weight of 14 ℔ of lead,
and, if the boat drops down
stream slowly, it may hang near
the bottom, so that the observation
is made instantly. In extensive
surveys of the Mississippi
observers with theodolites
were stationed at A and B. The
theodolite at A was directed
towards C, that at B was kept
on the boat. When the boat
came on the line AC, the observer
at A signalled, the sounding
line was dropped, and the
observer at B read off the angle
ABE. By repeating observations a number of soundings are obtained,
which can be plotted in their proper position, and the form
of the river bed drawn by connecting the extremities of the lines.
From the section can be measured the sectional area of the stream
Ω and its wetted perimeter χ; and from these the hydraulic mean
depth m can be calculated.

§ 135. Measurement of the Discharge of Rivers.—The area of cross
section multiplied by the mean velocity gives the discharge of the
stream. The height of the river with reference to some fixed mark
should be noted whenever the velocity is observed, as the velocity
and area of cross section are different in different states of the river.
To determine the mean velocity various methods may be adopted;
and, since no method is free from liability to error, either from the
difficulty of the observations or from uncertainty as to the ratio of
the mean velocity to the velocity observed, it is desirable that more
than one method should be used.

Instruments for Measuring the Velocity of Water

§ 136. Surface Floats are convenient for determining the surface
velocities of a stream, though their use is difficult near the banks.
The floats may be small balls of wood, of wax or of hollow metal, so
loaded as to float nearly flush with the water surface. To render

them visible they may have a vertical painted stem. In experiments
on the Seine, cork balls 13⁄4 in. diameter were used, loaded to
float flush with the water, and provided with a stem. In A. J. C.
Cunningham’s observations at Roorkee, the floats were thin circular
disks of English deal, 3 in. diameter and 1⁄4 in. thick. For observations
near the banks, floats 1 in. diameter and 1⁄8 in. thick were used.
To render them visible a tuft of cotton wool was used loosely fixed
in a hole at the centre.

The velocity is obtained by allowing the float to be carried down,
and noting the time of passage over a measured length of the stream.
If v is the velocity of any float, t the time of passing over a length
l, then v = l/t. To mark out distinctly the length of stream over
which the floats pass, two ropes may be stretched across the stream
at a distance apart, which varies usually from 50 to 250 ft., according
to the size and rapidity of the river. In the Roorkee experiments
a length of run of 50 ft. was found best for the central two-fifths of the
width, and 25 ft. for the remainder, except very close to the banks,
where the run was made 121⁄2 ft. only. The longer the run the less
is the proportionate error of the time observations, but on the other
hand the greater the deviation of the floats from a straight course
parallel to the axis of the stream. To mark the precise position at
which the floats cross the ropes, Cunningham used short white rope
pendants, hanging so as nearly to touch the surface of the water. In
this case the streams were 80 to 180 ft. in width. In wider streams the
use of ropes to mark the length of run is impossible, and recourse must
be had to box sextants or theodolites to mark the path of the floats.


	

	Fig. 136.


Let AB (fig. 136) be a measured base line strictly parallel to the
thread of the stream, and AA1, BB1 lines at right angles to AB
marked out by ranging rods at A1 and
B1. Suppose observers stationed at A
and B with sextants or theodolites, and
let CD be the path of any float down
stream. As the float approaches AA1,
the observer at B keeps it on the cross wire
of his instrument. The observer at A
observes the instant of the float reaching
the line AA1, and signals to B who then
reads off the angle ABC. Similarly, as
the float approaches BB1, the observer
at A keeps it in sight, and when signalled
to by B reads the angle BAD. The data
so obtained are sufficient for plotting
the path of the float and determining
the distances AC, BD.

The time taken by the float in passing
over the measured distance may be observed
by a chronograph, started as the
float passes the upper rope or line, and
stopped when it passes the lower. In
Cunningham’s observations two chronometers
were sometimes used, the time of passing one end of the run
being noted on one, and that of passing the other end of the run
being noted on the other. The chronometers were compared
immediately before the observations. In other cases a single
chronometer was used placed midway of the run. The moment of
the floats passing the ends of the run was signalled to a time-keeper
at the chronometer by shouting. It was found quite possible
to count the chronometer beats to the nearest half second,
and in some cases to the nearest quarter second.


	

	Fig. 137.


§ 137. Sub-surface Floats.—The velocity at different depths below
the surface of a stream may be obtained by sub-surface floats, used
precisely in the same way as surface floats. The most usual arrangement
is to have a large float, of slightly greater density than water,
connected with a small and very light surface float. The motion
of the combined arrangement is not
sensibly different from that of the large
float, and the small surface float enables
an observer to note the path and velocity
of the sub-surface float. The instrument
is, however, not free from
objection. If the large submerged
float is made of very nearly the same
density as water, then it is liable to be
thrown upwards by very slight eddies
in the water, and it does not maintain
its position at the depth at which it is
intended to float. On the other hand,
if the large float is made sensibly
heavier than water, the indicating or
surface float must be made rather large,
and then it to some extent influences
the motion of the submerged float.
Fig. 137 shows one form of sub-surface
float. It consists of a couple
of tin plates bent at a right angle and soldered together at the angle.
This is connected with a wooden ball at the surface by a very thin
wire or cord. As the tin alone makes a heavy submerged float, it is
better to attach to the tin float some pieces of wood to diminish its
weight in water. Fig. 138 shows the form of submerged float used
by Cunningham. It consists of a hollow metal ball connected to a
slice of cork, which serves as the surface float.


	
	

	Fig. 138.
	Fig. 139.


§ 138. Twin Floats.—Suppose two equal and similar floats (fig. 139)
connected by a wire. Let one float be a little lighter and the other
a little heavier than water. Then the velocity of the combined
floats will be the mean of the surface velocity and the velocity at the
depth at which the heavier float swims, which is determined by the
length of the connecting wire. Thus if vs is the surface velocity
and vd the velocity at the depth to which the lower float is sunk, the
velocity of the combined floats will be

v = 1⁄2 (vs + vd).

Consequently, if v is observed, and vs determined by an experiment
with a single float,

vd = 2v − vs

According to Cunningham, the twin float gives better results than
the sub-surface float.


	

	Fig. 140.


§ 139. Velocity Rods.—Another form of float is shown in fig. 140.
This consists of a cylindrical rod loaded at the lower end so as to
float nearly vertical in water. A wooden rod, with a metal cap at the
bottom in which shot can be placed,
answers better than anything else, and
sometimes the wooden rod is made in
lengths, which can be screwed together
so as to suit streams of different depths.
A tuft of cotton wool at the top serves
to make the float more easily visible.
Such a rod, so adjusted in length that it
sinks nearly to the bed of the stream,
gives directly the mean velocity of the
whole vertical section in which it floats.

§ 140. Revy’s Current Meter.—No instrument
has been so much used in
directly determining the velocity of a
stream at a given point as the screw
current meter. Of this there are a
dozen varieties at least. As an example
of the instrument in its simplest form,
Revy’s meter may be selected. This is an
ordinary screw meter of a larger size than
usual, more carefully made, and with its
details carefully studied (figs. 141, 142).
It was designed after experience in gauging
the great South American rivers. The screw, which is actuated by
the water, is 6 in. in diameter, and is of the type of the Griffiths screw
used in ships. The hollow spherical boss serves to make the weight of
the screw sensibly equal to its displacement, so that friction is much
reduced. On the axis aa of the screw is a worm which drives the
counter. This consists of two worm wheels g and h fixed on a common
axis. The worm wheels are carried on a frame attached to the pin l.
By means of a string attached to l they can be pulled into gear with
the worm, or dropped out of gear and stopped at any instant. A
nut m can be screwed up, if necessary, to keep the counter permanently
in gear. The worm is two-threaded, and the worm wheel
g has 200 teeth. Consequently it makes one rotation for 100 rotations
of the screw, and the number of rotations up to 100 is marked
by the passage of the graduations on its edge in front of a fixed index.
The second worm wheel has 196 teeth, and its edge is divided into
49 divisions. Hence it falls behind the first wheel one division for a
complete rotation of the latter. The number of hundreds of rotations
of the screw are therefore shown by the number of divisions on
h passed over by an index fixed to g. One difficulty in the use of the
ordinary screw meter is that particles of grit, getting into the working
parts, very sensibly alter the friction, and therefore the speed of the
meter. Revy obviates this by enclosing the counter in a brass box
with a glass face. This box is filled with pure water, which ensures a
constant coefficient of friction for the rubbing parts, and prevents any
mud or grit finding its way in. In order that the meter may place itself
with the axis parallel to the current, it is pivoted on a vertical axis
and directed by a large vane shown in fig. 142. To give the vane

more directing power the vertical axis is nearer the screw than in
ordinary meters, and the vane is larger. A second horizontal vane is
attached by the screws x, x, the object of which is to allow the meter
to rest on the ground without the motion of the screw being interfered
with. The string or wire for starting and stopping the meter is
carried through the centre of the vertical axis, so that the strain on
it may not tend to pull the meter oblique to the current. The pitch
of the screw is about 9 in. The screws at x serve for filling the meter
with water. The whole apparatus is fixed to a rod (fig. 142), of a
length proportionate to the depth, or for very great depths it is
fixed to a weighted bar lowered by ropes, a plan invented by Revy.
The instrument is generally used thus. The reading of the counter is
noted, and it is put out of gear. The meter is
then lowered into the water to the required
position from a platform between two boats,
or better from a temporary bridge. Then the
counter is put into gear for one, two or five
minutes. Lastly, the instrument is raised
and the counter again read. The velocity is
deduced from the number of rotations in unit
time by the formulae given below. For
surface velocities the counter may be kept
permanently in gear, the screw being started
and stopped by hand.
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§ 141. The Harlacher Current Meter.—In
this the ordinary counting apparatus is abandoned.
A worm drives a worm wheel, which
makes an electrical contact once for each 100
rotations of the worm. This contact gives a
signal above water. With this arrangement,
a series of velocity observations can be made,
without removing the instrument from the
water, and a number of practical difficulties
attending the accurate starting and stopping
of the ordinary counter are entirely got rid
of. Fig. 143 shows the meter. The worm
wheel z makes one rotation for 100 of the
screw. A pin moving the lever x makes the
electrical contact. The wires b, c are led
through a gas pipe B; this also serves to
adjust the meter to any required position on
the wooden rod dd. The rudder or vane is
shown at WH. The galvanic current acts on
the electromagnet m, which is fixed in a
small metal box containing also the battery.
The magnet exposes and withdraws a coloured
disk at an opening in the cover of the box.

§ 142. Amsler Laffon Current Meter.—A
very convenient and accurate current meter
is constructed by Amsler Laffon of Schaffhausen.
This can be used on a rod, and
put into and out of gear by a ratchet. The
peculiarity in this case is that there is a double ratchet, so that
one pull on the string puts the counter into gear and a second
puts it out of gear. The string may be slack during the action
of the meter, and there is less uncertainty than when the
counter has to be held in gear. For deep streams the meter A is
suspended by a wire with a heavy lenticular weight below (fig. 144).
The wire is payed out from a small winch D, with an index showing
the depth of the meter, and passes over a pulley B. The meter is in
gimbals and is directed by a conical rudder which keeps it facing the
stream with its axis horizontal. There is an electric circuit from a
battery C through the meter, and a contact is made closing the circuit
every 100 revolutions. The moment the circuit closes a bell rings.
By a subsidiary arrangement, when the foot of the instrument, 0.3
metres below the axis of the meter, touches the ground the circuit is
also closed and the bell rings. It is easy to distinguish the continuous
ring when the ground is reached from the short ring when the counter
signals. A convenient winch for the wire is so graduated that if
set when the axis of the meter is at the water surface it indicates at
any moment the depth of the meter below the surface. Fig. 144
shows the meter as used on a boat. It is a very convenient instrument
for obtaining the velocity at different depths and can also be
used as a sounding instrument.


	

	Fig. 143.


§ 143. Determination of the Coefficients of the Current Meter.—Suppose
a series of observations has been made by towing the meter in
still water at different speeds, and that it is required to ascertain from
these the constants of the meter. If v is the velocity of the water and
n the observed number of rotations per second, let

v = α + βn


(1)

where α and β are constants. Now let the meter be towed over a
measured distance L, and let N be the revolutions of the meter and
t the time of transit. Then the speed of the meter relatively to the
water is L/t = v feet per second, and the number of revolutions per
second is N/t = n. Suppose m observations have been made in this
way, furnishing corresponding values of v and n, the speed in each
trial being as uniform as possible,


	Σn = 	n1 + n2 + ...

	Σv = 	v1 + v2 + ...

	Σnv = 	n1v1 + n2v2 + ...

	Σn2 = 	n12 + n22 + ...

	[Σn]2 = 	[n1 + n2 + ...]2





Then for the determination of the constants α and β in (1), by the
method of least squares—


	α = 	Σn2Σv − ΣnΣnv
	,

	mΣn2 − [Σn]2



	β = 	mΣnv − ΣvΣn
	.

	mΣn2 − [Σn]2



	

	Fig. 144.


In a few cases the constants for screw current meters have been
determined by towing them in R. E. Froude’s experimental tank in
which the resistance of ship models is ascertained. In that case the
data are found with exceptional accuracy.

§ 144. Darcy Gauge or modified Pitot Tube.—A very old instrument
for measuring velocities, invented by Henri Pitot in 1730
(Histoire de l’Académie des Sciences, 1732, p. 376), consisted simply
of a vertical glass tube with a right-angled bend, placed so that its
mouth was normal to the direction of flow (fig. 145).


	

	Fig. 145.


The impact of the stream on the mouth of the tube balances a
column in the tube, the height of which is approximately h = v2/2g,
where v is the velocity
at the depth x. Placed
with its mouth parallel
to the stream the water
inside the tube is nearly
at the same level as the
surface of the stream,
and turned with the
mouth down stream, the
fluid sinks a depth
h′ = v2/2g nearly, though
the tube in that case
interferes with the free
flow of the liquid and
somewhat modifies the
result. Pitot expanded
the mouth of the tube so as to form a funnel or bell mouth. In that
case he found by experiment

h = 1.5v2 / 2g.

But there is more disturbance of the stream. Darcy preferred to
make the mouth of the tube very small to avoid interference with the
stream and to check oscillations of the water column. Let the
difference of level of a pair of tubes A and B (fig. 145) be taken to be
h = kv2/2g, then k may be taken to be a corrective coefficient whose
value in well-shaped instruments is very nearly unity. By placing
his instrument in front of a boat towed through water Darcy found
k = 1.034; by placing the instrument in a stream the velocity of
which had been ascertained by floats, he found k = 1.006; by readings
taken in different parts of the section of a canal in which a known
volume of water was flowing, he found k = 0.993. He believed the
first value to be too high in consequence
of the disturbance caused
by the boat. The mean of the other
two values is almost exactly unity
(Recherches hydrauliques, Darcy and
Bazin, 1865, p. 63). W. B. Gregory
used somewhat differently formed
Pitot tubes for which the k = 1 (Am.
Soc. Mech. Eng., 1903, 25). T. E.
Stanton used a Pitot tube in determining
the velocity of an air current,
and for his instrument he found
k = 1.030 to k = 1.032 (“On the Resistance
of Plane Surfaces in a
Current of Air,” Proc. Inst. Civ.
Eng., 1904, 156).

One objection to the Pitot tube
in its original form was the great
difficulty and inconvenience of
reading the height h in the immediate
neighbourhood of the stream
surface. This is obviated in the
Darcy gauge, which can be removed
from the stream to be read.

Fig. 146 shows a Darcy gauge.
It consists of two Pitot tubes
having their mouths at right angles.
In the instrument shown, the two
tubes, formed of copper in the
lower part, are united into one for
strength, and the mouths of the
tubes open vertically and horizontally.
The upper part of the tubes
is of glass, and they are provided
with a brass scale and two verniers
b, b. The whole instrument is supported
on a vertical rod or small pile
AA, the fixing at B permitting the
instrument to be adjusted to any
height on the rod, and at the same
time allowing free rotation, so that
it can be held parallel to the current.
At c is a two-way cock, which can
be opened or closed by cords. If
this is shut, the instrument can be
lifted out of the stream for reading.
The glass tubes are connected at
top by a brass fixing, with a stop
cock a, and a flexible tube and
mouthpiece m. The use of this is
as follows. If the velocity is required
at a point near the surface of the stream, one at least of
the water columns would be below the level at which it could be
read. It would be in the copper part of the instrument. Suppose
then a little air is sucked out by the tube m, and the cock a
closed, the two columns will be forced up an amount corresponding
to the difference between atmospheric pressure and that in the
tubes. But the difference of level will remain unaltered.

When the velocities to be measured are not very small, this instrument
is an admirable one. It requires observation only of a single
linear quantity, and does not require any time observation. The
law connecting the velocity and the observed height is a rational
one, and it is not absolutely necessary to make any experiments on
the coefficient of the instrument. If we take v = k√(2gh), then it
appears from Darcy’s experiments that for a well-formed instrument
k does not sensibly differ from unity. It gives the velocity at a
definite point in the stream. The chief difficulty arises from the fact
that at any given point in a stream the velocity is not absolutely
constant, but varies a little from moment to moment. Darcy in
some of his experiments took several readings, and deduced the
velocity from the mean of the highest and lowest.

§ 145. Perrodil Hydrodynamometer.—This consists of a frame
abcd (fig. 147) placed vertically in the stream, and of a height not
less than the stream’s depth. The two vertical members of this
frame are connected by cross bars, and united above water by a
circular bar, situated in the vertical plane and carrying a horizontal
graduated circle ef. This whole system is movable round its axis,
being suspended on a pivot at g connected with the fixed support
mn. Other horizontal arms serve as guides. The central vertical
rod gr forms a torsion rod, being fixed at r to the frame abcd, and,
passing freely upwards through the guides, it carries a horizontal

needle moving over the graduated circle ef. The support g, which
carries the apparatus, also receives in a tubular guide the end of the
torsion rod gr and a set screw for fixing the upper end of the torsion
rod when necessary. The impulse of the stream of water is received
on a circular disk x, in the plane of the torsion rod and the frame
abcd. To raise and lower the apparatus easily, it is not fixed directly
to the rod mn, but to a tube kl sliding on mn.
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Suppose the apparatus arranged so that the disk x is at that level
in the stream where the velocity is to be determined. The plane
abcd is placed parallel to the direction of motion of the water. Then
the disk x (acting as a rudder) will place itself parallel to the stream
on the down stream side of the frame. The torsion rod will be unstrained,
and the needle will be at zero on the graduated circle.
If, then, the instrument is turned by pressing the needle, till the plane
abcd of the disk and the zero of the graduated circle is at right angles
to the stream, the torsion rod will be twisted through an angle which
measures the normal impulse of the stream on the disk x. That angle
will be given by the distance of the needle from zero. Observation
shows that the velocity of the water at a given point is not constant.
It varies between limits more or less wide. When the apparatus is
nearly in its right position, the set screw at g is made to clamp the
torsion spring. Then the needle is fixed, and the apparatus carrying
the graduated circle oscillates. It
is not, then, difficult to note the
mean angle marked by the needle.

Let r be the radius of the torsion
rod, l its length from the needle
over ef to r, and α the observed
torsion angle. Then the moment
of the couple due to the molecular
forces in the torsion rod is

M = EtIα / l;

where Et is the modulus of elasticity
for torsion, and I the polar
moment of inertia of the section of
the rod. If the rod is of circular
section, I = 1⁄2πr4. Let R be the
radius of the disk, and b its
leverage, or the distance of its
centre from the axis of the torsion
rod. The moment of the pressure
of the water on the disk is

Fb = kb (G / 2g) πR2v2,

where G is the heaviness of water
and k an experimental coefficient.
Then

EtIα / l = kb (G / 2g) πR2v2.

For any given instrument,

v = c √ α,

where c is a constant coefficient for
the instrument.

The instrument as constructed had three disks which could be
used at will. Their radii and leverages were in feet


	  	R = 	b =

	1st disk 	0.052 	0.16

	2nd  ” 	0.105 	0.32

	3rd  ” 	0.210 	0.66



For a thin circular plate, the coefficient k = 1.12. In the actual
instrument the torsion rod was a brass wire 0.06 in. diameter and
61⁄2 ft. long. Supposing α measured in degrees, we get by calculation

v = 0.335 √ α; 0.115 √ α; 0.042 √ α.

Very careful experiments were made with the instrument. It
was fixed to a wooden turning bridge, revolving over a circular
channel of 2 ft. width, and about 76 ft. circumferential length. An
allowance was made for the slight current produced in the channel.
These experiments gave for the coefficient c, in the formula
v = c√α,

	 
1st disk, c =  0.3126 for velocities of 3 to 16  ft.

2nd disk, c =  0.1177 for velocities of 11⁄4 to 31⁄4 ft.

3rd disk, c =  0.0349 for velocities of less than 11⁄4 ft.


 


The instrument is preferable to the current meter in giving the
velocity in terms of a single observed quantity, the angle of torsion,
while the current meter involves the observation of two quantities,
the number of rotations and the time. The current meter, except
in some improved forms, must be withdrawn from the water to read
the result of each experiment, and the law connecting the velocity
and number of rotations of a current meter is less well-determined
than that connecting the pressure on a disk and the torsion of the
wire of a hydrodynamometer.

The Pitot tube, like the hydrodynamometer, does not require a
time observation. But, where the velocity is a varying one, and
consequently the columns of water in the Pitot tube are oscillating,
there is room for doubt as to whether, at any given moment of closing
the cock, the difference of level exactly measures the impulse of
the stream at the moment. The Pitot tube also fails to give measurable
indications of very low velocities.

Processes for Gauging Streams

§ 146. Gauging by Observation of the Maximum Surface Velocity.—The
method of gauging which involves the least trouble is to determine
the surface velocity at the thread of the stream, and to deduce
from it the mean velocity of the whole cross section. The maximum
surface velocity may be determined by floats or by a current meter.
Unfortunately the ratio of the maximum surface to the mean velocity
is extremely variable. Thus putting v0 for the surface velocity
at the thread of the stream, and vm for the mean velocity of the whole
cross section, vm/v0 has been found to have the following
values:—


	  	 vm/v0

	De Prony, experiments on small wooden channels 	0.8164

	Experiments on the Seine 	0.62

	Destrem and De Prony, experiments on the Neva 	0.78

	Boileau, experiments on canals 	0.82

	Baumgartner, experiments on the Garonne 	0.80

	Brünings (mean) 	0.85

	Cunningham, Solani aqueduct 	0.823





Various formulae, either empirical or based on some theory of the
vertical and horizontal velocity curves, have been proposed for
determining the ratio vm/v0. Bazin found from his experiments the
empirical expression

vm = v0 − 25.4 √ (mi);

where m is the hydraulic mean depth and i the slope of the stream.

In the case of irrigation canals and rivers, it is often important to
determine the discharge either daily or at other intervals of time,
while the depth and consequently the mean velocity is varying.
Cunningham (Roorkee Prof. Papers, iv. 47), has shown that,
for a given part of such a stream, where the bed is regular and of
permanent section, a simple formula may be found for the variation
of the central surface velocity with the depth. When once the
constants of this formula have been determined by measuring the
central surface velocity and depth, in different conditions of the
stream, the surface velocity can be obtained by simply observing the
depth of the stream, and from this the mean velocity and discharge
can be calculated. Let z be the depth of the stream, and v0 the surface
velocity, both measured at the thread of the stream. Then v02 = cz;
where c is a constant which for the Solani aqueduct had the values
1.9 to 2, the depths being 6 to 10 ft., and the velocities 31⁄2 to 41⁄2 ft.
Without any assumption of a formula, however, the surface velocities,
or still better the mean velocities, for different conditions of the
stream may be plotted on a diagram in which the abscissae are depths
and the ordinates velocities. The continuous curve through points so
found would then always give the velocity for any observed depth of
the stream, without the need of making any new float or current
meter observations.

§ 147. Mean Velocity determined by observing a Series of Surface
Velocities.—The ratio of the mean velocity to the surface velocity
in one longitudinal section is better ascertained than the ratio of
the central surface velocity to the mean velocity of the whole cross
section. Suppose the river divided into a number of compartments
by equidistant longitudinal planes, and the surface velocity observed
in each compartment. From this the mean velocity in each compartment
and the discharge can be calculated. The sum of the
partial discharges will be the total discharge of the stream. When
wires or ropes can be stretched across the stream, the compartments
can be marked out by tags attached to them. Suppose two such
ropes stretched across the stream, and floats dropped in above the
upper rope. By observing within which compartment the path of
the float lies, and noting the time of transit between the ropes, the
surface velocity in each compartment can be ascertained. The
mean velocity in each compartment is 0.85 to 0.91 of the surface
velocity in that compartment. Putting k for this ratio, and
v1, v2 ... for the observed velocities, in compartments of area
Ω1, Ω2 ... then the total discharge is

Q = k (Ω1v1 + Ω2v2 + ... ).

If several floats are allowed to pass over each compartment, the
mean of all those corresponding to one compartment is to be taken
as the surface velocity of that compartment.
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This method is very applicable in the case of large streams or
rivers too wide to stretch a rope across. The paths of the floats
are then ascertained in this way. Let fig. 148 represent a portion
of the river, which should be straight and free from obstructions.
Suppose a base line AB measured
parallel to the thread of the stream,
and let the mean cross section of
the stream be ascertained either by
sounding the terminal cross sections
AE, BF, or by sounding a series of
equidistant cross sections. The
cross sections are taken at right
angles to the base line. Observers
are placed at A and B with theodolites
or box sextants. The floats
are dropped in from a boat above
AE, and picked up by another boat
below BF. An observer with a
chronograph or watch notes the
time in which each float passes
from AE to BF. The method of
proceeding is this. The observer
A sets his theodolite in the direction
AE, and gives a signal to drop
a float. B keeps his instrument
on the float as it comes down. At
the moment the float arrives at
C in the line AE, the observer at
A calls out. B clamps his instrument and reads off the angle ABC,
and the time observer begins to note the time of transit. B now
points his instrument in the direction BF, and A keeps the float on
the cross wire of his instrument. At the moment the float arrives
at D in the line BF, the observer B calls out, A clamps his instrument
and reads off the angle BAD, and the time observer notes the
time of transit from C to D. Thus all the data are determined for
plotting the path CD of the float and determining its velocity. By
dropping in a series of floats, a number of surface velocities can be
determined. When all these have been plotted, the river can be
divided into convenient compartments. The observations belonging
to each compartment are then averaged, and the mean velocity and
discharge calculated. It is obvious that, as the surface velocity is
greatly altered by wind, experiments of this kind should be made in
very calm weather.

The ratio of the surface velocity to the mean velocity in the same
vertical can be ascertained from the formulae for the vertical velocity
curve already given (§ 101). Exner, in Erbkam’s Zeitschrift for 1875,
gave the following convenient formula. Let v be the mean and V
the surface velocity in any given vertical longitudinal section, the
depth of which is h

v / V = (1 + 0.1478 √ h) / (1 + 0.2216 √ h).

If vertical velocity rods are used instead of common floats, the
mean velocity is directly determined for the vertical section in
which the rod floats. No formula of reduction is then necessary.
The observed velocity has simply to be multiplied by the area of
the compartment to which it belongs.

§ 148. Mean Velocity of the Stream from a Series of Mid Depth
Velocities.—In the gaugings of the Mississippi it was found that
the mid depth velocity differed by only a very small quantity from
the mean velocity in the vertical section, and it was uninfluenced by
wind. If therefore a series of mid depth velocities are determined
by double floats or by a current meter, they may be taken to be the
mean velocities of the compartments in which they occur, and no
formula of reduction is necessary. If floats are used, the method
is precisely the same as that described in the last paragraph for surface
floats. The paths of the double floats are observed and plotted,
and the mean taken of those corresponding to each of the compartments
into which the river is divided. The discharge is the sum of
the products of the observed mean mid depth velocities and the
areas of the compartments.

§ 149. P. P. Boileau’s Process for Gauging Streams.—Let U be the
mean velocity at a given section of a stream, V the maximum velocity,
or that of the principal filament, which is generally a little below the
surface, W and w the greatest and least velocities at the surface.
The distance of the principal filament from the surface is generally
less than one-fourth of the depth of the stream; W is a little less
than V; and U lies between W and w. As the surface velocities
change continuously from the centre towards the sides there are at
the surface two filaments having a velocity equal to U. The determination
of the position of these filaments, which Boileau terms the
gauging filaments, cannot be effected entirely by theory. But, for
sections of a stream in which there are no abrupt changes of depth,
their position can be very approximately assigned. Let Δ and l be
the horizontal distances of the surface filament, having the velocity
W, from the gauging filament, which has the velocity U, and from
the bank on one side. Then

Δ / l = c4 √ {(W + 2w) / 7 (W − w)},

c being a numerical constant. From gaugings by Humphreys and
Abbot, Bazin and Baumgarten, the values c = 0.919, 0.922 and
0.925 are obtained. Boileau adopts as a mean value 0.922. Hence,
if W and w are determined by float gauging or otherwise, Δ can
be found, and then a single velocity observation at Δ ft. from the
filament of maximum velocity gives, without need of any reduction,
the mean velocity of the stream. More conveniently W, w, and U
can be measured from a horizontal surface velocity curve, obtained
from a series of float observations.

§ 150. Direct Determination of the Mean Velocity by a Current Meter
or Darcy Gauge.—The only method of determining the mean velocity
at a cross section of a stream which involves no assumption of the
ratio of the mean velocity to other quantities is this—a plank
bridge is fixed across the stream near its surface. From this, velocities
are observed at a sufficient number of points in the cross section of
the stream, evenly distributed over its area. The mean of these is
the true mean velocity of the stream. In Darcy and Bazin’s experiments
on small streams, the velocity was thus observed at 36
points in the cross section.

When the stream is too large to fix a bridge across it, the observations
may be taken from a boat, or from a couple of boats with a
gangway between them, anchored successively at a series of points
across the width of the stream. The position of the boat for each
series of observations is fixed by angular observations to a base line
on shore.
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§ 151. A. R. Harlacher’s Graphic Method of determining the Discharge
from a Series of Current Meter Observations.—Let ABC (fig.
149) be the cross section of a river at which a complete series of
current meter observations have been taken. Let I., II., III., ... be
the verticals at different points of which the velocities were measured.

Suppose the depths at I., II., III., ... (fig. 149), set off as vertical
ordinates in fig. 150, and on these vertical ordinates suppose the
velocities set off horizontally at their proper depths. Thus, if v is
the measured velocity at the depth h from the surface in fig. 149, on
vertical marked III., then at III. in fig. 150 take cd = h and ac = v.
Then d is a point in the vertical velocity curve for the vertical III.,
and, all the velocities for that ordinate being similarly set off, the
curve can be drawn. Suppose all the vertical velocity curves I....
V. (fig. 150), thus drawn. On each of these figures draw verticals
corresponding to velocities
of x, 2x, 3x ... ft.
per second. Then for
instance cd at III. (fig.
150) is the depth at
which a velocity of 2x
ft. per second existed
on the vertical III. in
fig. 149 and if cd is set
off at III. in fig. 149 it
gives a point in a curve
passing through points of the section where the velocity was 2x ft.
per second. Set off on each of the verticals in fig. 149 all the depths
thus found in the corresponding diagram in fig. 150. Curves drawn
through the corresponding points on the verticals are curves of
equal velocity.

The discharge of the stream per second may be regarded as a solid
having the cross section of the river (fig. 149) as a base, and cross
sections normal to the plane of fig. 149 given by the diagrams in fig.
150. The curves of equal velocity may therefore be considered as
contour lines of the solid whose volume is the discharge of the stream
per second. Let Ω0 be the area of the cross section of the river, Ω1,
Ω2 ... the areas contained by the successive curves of equal velocity,
or, if these cut the surface of the stream, by the curves and that
surface. Let x be the difference of velocity for which the successive
curves are drawn, assumed above for simplicity at 1 ft. per second.
Then the volume of the successive layers of the solid body whose
volume represents the discharge, limited by successive planes passing
through the contour curves, will be

1⁄2 x (Ω0 + Ω1), 1⁄2 x (Ω1 + Ω2), and so on.

Consequently the discharge is

Q = x {1⁄2 (Ω0 + Ωn) + Ω1 = Ω2 + ... + Ωn−1}.

The areas Ω0, Ω1 ... are easily ascertained by means of the polar
planimeter. A slight difficulty arises in the part of the solid lying
above the last contour curve. This will have generally a height
which is not exactly x, and a form more rounded than the other
layers and less like a conical frustum. The volume of this may be
estimated separately, and taken to be the area of its base (the area
Ωn) multiplied by 1⁄3 to 1⁄2 its height.
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Fig. 151 shows the results of one of Harlacher’s gaugings worked
out in this way. The upper figure shows the section of the river
and the positions of the verticals at which the soundings and gaugings
were taken. The lower gives the curves of equal velocity, worked out
from the current meter observations, by the aid of vertical velocity
curves. The vertical scale in this figure is ten times as great as in
the other. The discharge calculated from the contour curves is
14.1087 cubic metres per second. In the lower figure some other
interesting curves are drawn. Thus, the uppermost dotted curve is
the curve through points at which the maximum velocity was found;
it shows that the maximum velocity was always a little below the
surface, and at a greater depth at the centre than at the sides. The
next curve shows the depth at which the mean velocity for each
vertical was found. The next is the curve of equal velocity corresponding
to the mean velocity of the stream; that is, it passes
through points in the cross section where the velocity was identical
with the mean velocity of the stream.



Hydraulic Machines

§ 152. Hydraulic machines may be broadly divided into two
classes: (1) Motors, in which water descending from a higher
to a lower level, or from a higher to a lower pressure, gives up
energy which is available for mechanical operations; (2) Pumps,
in which the energy of a steam engine or other motor is expended
in raising water from a lower to a higher level. A few machines
such as the ram and jet pump combine the functions of motor
and pump. It may be noted that constructively pumps are
essentially reversed motors. The reciprocating pump is a reversed
pressure engine, and the centrifugal pump a reversed
turbine. Hydraulic machine tools are in principle motors combined
with tools, and they now form an important special class.

Water under pressure conveyed in pipes is a convenient and
economical means of transmitting energy and distributing it to
many scattered working points. Hence large and important
hydraulic systems are adopted in which at a central station
water is pumped at high pressure into distributing mains,
which convey it to various points where it actuates hydraulic
motors operating cranes, lifts, dock gates, and in some cases
riveting and shearing machines. In this case the head driving
the hydraulic machinery is artificially created, and it is the convenience
of distributing power in an easily applied form to distant
points which makes the system advantageous. As there is
some unavoidable loss in creating an artificial head this system
is most suitable for driving machines which work intermittently

(see Power Transmission). The development of electrical
methods of transmitting and distributing energy has led to the
utilization of many natural waterfalls so situated as to be useless
without such a means of transferring the power to points where
it can be conveniently applied. In some cases, as at Niagara, the
hydraulic power can only be economically developed in very
large units, and it can be most conveniently subdivided and
distributed by transformation into electrical energy. Partly
from the development of new industries such as paper-making
from wood pulp and electro-metallurgical processes, which
require large amounts of cheap power, partly from the facility
with which energy can now be transmitted to great distances
electrically, there has been a great increase in the utilization
of water-power in countries having natural waterfalls. According
to the twelfth census of the United States the total amount of
water-power reported as used in manufacturing establishments
in that country was 1,130,431 h.p. in 1870; 1,263,343 h.p.
in 1890; and 1,727,258 h.p. in 1900. The increase was 8.4%
in the decade 1870-1880, 3.1% in 1880-1890, and no less than
36.7% in 1890-1900. The increase is the more striking because
in this census the large amounts of hydraulic power which are
transmitted electrically are not included.

XII. IMPACT AND REACTION OF WATER


§ 153. When a stream of fluid in steady motion impinges on a
solid surface, it presses on the surface with a force equal and opposite
to that by which the velocity and direction of motion of the fluid
are changed. Generally, in problems on the impact of fluids, it is
necessary to neglect the effect of friction between the fluid and the
surface on which it moves.

During Impact the Velocity of the Fluid relatively to the Surface on
which it impinges remains unchanged in Magnitude.—Consider a
mass of fluid flowing in contact with a solid surface also in motion,
the motion of both fluid and solid being estimated relatively to the
earth. Then the motion of the fluid may be resolved into two parts,
one a motion equal to that of the solid, and in the same direction, the
other a motion relatively to the solid. The motion which the fluid
has in common with the solid cannot at all be influenced by the contact.
The relative component of the motion of the fluid can only be
altered in direction, but not in magnitude. The fluid moving in
contact with the surface can only have a relative motion parallel to
the surface, while the pressure between the fluid and solid, if friction
is neglected, is normal to the surface. The pressure therefore can
only deviate the fluid, without altering the magnitude of the relative
velocity. The unchanged common component and, combined with
it, the deviated relative component give the resultant final velocity,
which may differ greatly in magnitude and direction from the initial
velocity.

From the principle of momentum, the impulse of any mass of
fluid reaching the surface in any given time is equal to the change
of momentum estimated in the same direction. The pressure between
the fluid and surface, in any direction, is equal to the change of
momentum in that direction of so much fluid as reaches the surface
in one second. If Pa is the pressure in any direction, m the mass
of fluid impinging per second, va the change of velocity in the direction
of Pa due to impact, then

Pa = mva.
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If v1 (fig. 152) is the velocity and direction of motion before impact,
v2 that after impact, then v is the total change of motion due to
impact. The resultant pressure of the
fluid on the surface is in the direction of
v, and is equal to v multiplied by the mass
impinging per second. That is, putting
P for the resultant pressure,

P = mv.

Let P be resolved into two components,
N and T, normal and tangential to the
direction of motion of the solid on which
the fluid impinges. Then N is a lateral
force producing a pressure on the supports
of the solid, T is an effort which does work on the solid. If u is the
velocity of the solid, Tu is the work done per second by the fluid in
moving the solid surface.

Let Q be the volume, and GQ the weight of the fluid impinging
per second, and let v1 be the initial velocity of the fluid before striking
the surface. Then GQv12/2g is the original kinetic energy of Q cub.
ft. of fluid, and the efficiency of the stream considered as an arrangement
for moving the solid surface is

η = Tu / (GQv12 / 2g).

§ 154. Jet deviated entirely in one Direction.—Geometrical Solution
(fig. 153).—Suppose a jet of water impinges on a surface ac with a
velocity ab, and let it be wholly deviated in planes parallel to the
figure. Also let ae be the velocity and direction of motion of the
surface. Join eb; then the water moves with respect to the surface
in the direction and with the velocity eb. As this relative velocity
is unaltered by contact with the surface, take cd = eb, tangent to the
surface at c, then cd is the relative motion of the water with respect to
the surface at c. Take df equal and parallel to ae. Then fc (obtained
by compounding the relative motion of water to surface and common
velocity of water and surface) is the absolute velocity and direction
of the water leaving the surface. Take ag equal and parallel to fc.
Then, since ab is the initial and ag the final velocity and direction of
motion, gb is the total change of motion of the water. The resultant
pressure on the plane is in the direction gb. Join eg. In the triangle
gae, ae is equal and parallel to df, and ag to fc. Hence eg is equal and
parallel to cd. But cd = eb = relative motion of water and surface.
Hence the change of motion of the water is represented in magnitude
and direction by the third side of an isosceles triangle, of which the
other sides are equal to the relative velocity of the water and surface,
and parallel to the initial and final directions of relative motion.


	

	Fig. 153.


Special Cases


	

	Fig. 154.


§ 155. (1) A Jet impinges on a plane surface at rest, in a direction
normal to the plane (fig. 154).—Let a jet whose section is ω impinge
with a velocity v on a plane surface at rest,
in a direction normal to the plane. The
particles approach the plane, are gradually
deviated, and finally flow away parallel to
the plane, having then no velocity in the
original direction of the jet. The quantity
of water impinging per second is ωv. The
pressure on the plane, which is equal to
the change of momentum per second, is
P = (G/g) ωv2.

(2) If the plane is moving in the direction
of the jet with the velocity ±u, the quantity
impinging per second is ω(v ± u). The
momentum of this quantity before impact
is (G/g)ω(v ± u)v. After impact, the water
still possesses the velocity ±u in the
direction of the jet; and the momentum,
in that direction, of so much water as
impinges in one second, after impact, is
±(G/g) ω (v ± u)u. The pressure on the
plane, which is the change of momentum
per second, is the difference of these quantities or P = (G/g) ω (v ± u)2.
This differs from the expression obtained in the previous case,
in that the relative velocity of the water and plane v ± u is substituted
for v. The expression may be written P = 2 × G × ω (v ± u)2/2g,
where the last two terms are the volume of a prism of water whose
section is the area of the jet and whose length is the head due
to the relative velocity. The pressure on the plane is twice the
weight of that prism of water. The work done when the plane

is moving in the same direction as the jet is Pu = (G/g) ω (v − u)2u
foot-pounds per second. There issue from the jet ωv cub. ft.
per second, and the energy of this quantity before impact is
(G/2g) ωv3. The efficiency of the jet is therefore η = 2(v − u)2u/v3.
The value of u which makes this a maximum is found by differentiating
and equating the differential coefficient to zero:—

dη / du = 2 (v2 − 4vu + 3u2) / v3 = 0;

∴ u = v or 1⁄3 v.

The former gives a minimum, the latter a maximum efficiency.

Putting u = 1⁄3v in the expression above,

η max. = 8⁄27.

(3) If, instead of one plane moving before the jet, a series of planes
are introduced at short intervals at the same point, the quantity of
water impinging on the series will be ωv instead of ω(v − u), and the
whole pressure = (G/g) ωv (v − u). The work done is (G/g)ωvu (v − u).
The efficiency η = (G/g) ωvu (v − u) ÷ (G/2g) ωv3 = 2u(v-u)/v2. This becomes
a maximum for dη/du = 2(v − 2u) = 0, or u = 1⁄2v, and the η = 1⁄2.
This result is often used as an approximate expression for the velocity
of greatest efficiency when a jet of water strikes the floats of a water
wheel. The work wasted in this case is half the whole energy of the
jet when the floats run at the best speed.

§ 156. (4) Case of a Jet impinging on a Concave Cup Vane, velocity
of water v, velocity of vane in the same direction u (fig. 155), weight
impinging per second = Gw (v − u).
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If the cup is hemispherical, the water leaves the cup in a
direction parallel to the jet. Its relative velocity is v − u when approaching
the cup, and
−(v − u) when leaving it.
Hence its absolute velocity
when leaving the cup is
u − (v − u) = 2u − v. The
change of momentum per
second = (G/g) ω (v − u)
{v − (2u − v)} = 2(G/g) ω (v − u)2.
Comparing this with case 2,
it is seen that the pressure
on a hemispherical cup is
double that on a flat plane.
The work done on the
cup = 2(G/g) ω (v − u) 2u foot-pounds
per second. The efficiency of the jet is greatest when v = 3u;
in that case the efficiency = 16⁄27.

If a series of cup vanes are introduced in front of the jet, so that the
quantity of water acted upon is ωv instead of ω(v − u), then the whole
pressure on the chain of cups is (G/g) ωv {v − (2u − v)} = 2(G/g)ωv (v − u).
In this case the efficiency is greatest when v = 2u, and the maximum
efficiency is unity, or all the energy of the water is expended on the
cups.
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§ 157. (5) Case of a Flat Vane oblique to the Jet (fig. 156).—This case
presents some difficulty. The water spreading on the plane in all
directions from the point of impact, different particles leave the plane
with different absolute velocities. Let AB = v = velocity of water,
AC = u = velocity of plane. Then, completing the parallelogram,
AD represents in magnitude and direction the relative velocity of
water and plane. Draw AE normal to the plane and DE parallel to
the plane. Then the relative velocity AD may be regarded as consisting
of two components, one AE normal, the other DE parallel to
the plane. On the assumption that friction is insensible, DE is
unaffected by impact, but AE is destroyed. Hence AE represents
the entire change of velocity due to impact and the direction of
that change. The pressure on the plane is in the direction AE, and
its amount is = mass of water impinging per second × AE.

Let DAE = θ, and let AD = vr. Then AE = vr cos θ; DE = vr sin θ.
If Q is the volume of water impinging on the plane per second,
the change of momentum is (G/g) Qvr cos θ. Let AC = u = velocity
of the plane, and let AC make the angle CAE = δ with the normal
to the plane. The velocity of the plane in the direction AE =
u cos δ. The work of the jet on the plane = (G/g) Qvr cos θ u cos δ.
The same problem may be thus treated algebraically (fig. 157).
Let BAF = α, and CAF = δ. The velocity v of the water may be decomposed
into AF = v cos α normal to the plane, and FB = v sin α
parallel to the plane. Similarly the velocity of the plane = u = AC =
BD can be decomposed into BG = FE = u cos δ normal to the plane,
and DG = u sin δ parallel to the plane. As friction is neglected, the
velocity of the water parallel to the plane is unaffected by the impact,
but its component v cos α normal to the plane becomes after
impact the same as that of the plane, that is, u cos δ. Hence the
change of velocity during impact = AE = v cos α − u cos δ. The
change of momentum per second, and consequently the normal
pressure on the plane is N = (G/g) Q(v cos α − u cos δ). The pressure
in the direction in which the plane is moving is P = N cos δ = (G/g)Q
(v cos α − u cos δ) cos δ, and the work done on the plane is Pu =
(G/g)Q(v cos α − u cos δ) u cos δ, which is the same expression as
before, since AE = vr cos θ = v cos α − u cos δ.


	

	Fig. 157.



	

	Fig. 158.


In one second the plane moves so that the point A (fig. 158) comes
to C, or from the position
shown in full lines to the
position shown in dotted
lines. If the plane remained
stationary, a length AB = v
of the jet would impinge on
the plane, but, since the plane
moves in the same direction
as the jet, only the length
HB = AB − AH impinges on
the plane.

But AH = AC cos δ / cos α =
u cos δ / cos α, and therefore
HB = v − u cos δ / cos α. Let
ω = sectional area of jet;
volume impinging on plane
per second = Q = ω(v − u cos
δ / cos α) = ω (v cos α − u cos δ) / cos α. Inserting this in the formulae
above, we get


	N = 	G
	  	ω
	(v cos α − u cos δ)2;

	g 	cos α


(1)


	P = 	G
	  	ω cos δ
	(v cos α − u cos δ)2;

	g 	cos α


(2)


	Pu = 	G
	ωu 	cos δ
	(v cos α − u cos δ)2;

	g 	cos α


(3)

Three cases may be distinguished:—

(a) The plane is at rest. Then u = 0, N = (G/g) ωv2cos α; and the
work done on the plane and the efficiency of the jet are zero.

(b) The plane moves parallel to the jet. Then δ = α, and Pu =
(G/g)ωu cos2 α (v − u)2, which is a maximum when u = 1⁄3v.

When u = 1⁄3v then Pu max. = 4⁄27(G/g)ωv3 cos2α, and the efficiency
= η = 4⁄9cos2α.

(c) The plane moves perpendicularly to the jet. Then δ = 90° − α;
cos δ = sin α; and Pu = G/g ωu (sin α / cos α) (v cos α − u sin α)2. This is a maximum
when u = 1⁄3v cos α.

When u = 1⁄3v cos α, the maximum work and the efficiency are the
same as in the last case.


	

	Fig. 159.


§ 158. Best Form of Vane to receive Water.—When water impinges
normally or obliquely on a plane, it is scattered in all directions
after impact, and the work carried away by the water is then generally
lost, from the impossibility of dealing afterwards with streams of
water deviated in so many directions. By suitably forming the vane,
however, the water may be entirely deviated in one direction, and
the loss of energy from agitation of the water is entirely avoided.

Let AB (fig. 159) be a vane, on which a jet of water impinges at
the point A and in the direction AC. Take AC = v = velocity of

water, and let AD represent in magnitude and direction the velocity
of the vane. Completing the parallelogram, DC or AE represents the
direction in which the water is moving relatively to the vane. If
the lip of the vane at A is tangential to AE, the water will not have
its direction suddenly changed when it impinges on the vane, and
will therefore have no tendency to spread laterally. On the contrary
it will be so gradually deviated that it will glide up the vane in the
direction AB. This is sometimes expressed by saying that the vane
receives the water without shock.


	

	Fig. 160.


§ 159. Floats of Poncelet Water Wheels.—Let AC (fig. 160) represent
the direction of a thin horizontal stream of water having the
velocity v. Let AB be a curved float moving horizontally with
velocity u. The relative motion of water and float is then initially
horizontal, and equal to v − u.

In order that the float may receive the water without shock, it is
necessary and sufficient that the lip of the float at A should be
tangential to the direction AC of relative motion. At the end of
(v − u)/g seconds the float moving with the velocity u comes to the
position A1B1, and during this time a particle of water received at
A and gliding up the float with the relative velocity v − u, attains a
height DE = (v − u)2/2g. At E the water comes to relative rest. It
then descends along the float, and when after 2(v − u)/g seconds the
float has come to A2B2 the water will again have reached the lip at
A2 and will quit it tangentially, that is, in the direction CA2, with
a relative velocity −(v − u) = −√ (2gDE) acquired under the influence
of gravity. The absolute velocity of the water leaving the float
is therefore u − (v − u) = 2u − v. If u = 1⁄2v, the water will drop off the
bucket deprived of all energy of motion. The whole of the work
of the jet must therefore have been expended in driving the float.
The water will have been received without shock and discharged
without velocity. This is the principle of the Poncelet wheel, but
in that case the floats move over an arc of a large circle; the stream
of water has considerable thickness (about 8 in.); in order to get
the water into and out of the wheel, it is then necessary that the lip
of the float should make a small angle (about 15°) with the direction
of its motion. The water quits the wheel with a little of its energy of
motion remaining.

§ 160. Pressure on a Curved Surface when the Water is deviated
wholly in one Direction.—When a jet of water impinges on a curved
surface in such a direction that it is received without shock, the
pressure on the surface is due to its gradual deviation from its first
direction. On any portion of the area the pressure is equal and
opposite to the force required to cause the deviation of so much
water as rests on that surface. In common language, it is equal
to the centrifugal force of that quantity of water.


	

	Fig. 161.


Case 1. Surface Cylindrical and Stationary.—Let AB (fig. 161)
be the surface, having its axis at O and its radius = r. Let the
water impinge at A tangentially,
and quit the surface tangentially
at B. Since the surface is at rest,
v is both the absolute velocity of
the water and the velocity relatively
to the surface, and this remains unchanged
during contact with the
surface, because the deviating force
is at each point perpendicular to
the direction of motion. The water
is deviated through an angle
BCD = AOB = φ. Each particle of
water of weight p exerts radially
a centrifugal force pv2/rg. Let the
thickness of the stream = t ft. Then
the weight of water resting on
unit of surface = Gt ℔; and the normal pressure per unit of
surface = n = Gtv2/gr. The resultant of the radial pressures uniformly
distributed from A to B will be a force acting in the
direction OC bisecting AOB, and its magnitude will equal that of a
force of intensity = n, acting on the projection of AB on a plane
perpendicular to the direction OC. The length of the chord AB =
2r sin 1⁄2φ; let b = breadth of the surface perpendicular to the plane
of the figure. The resultant pressure on surface


	= R = 2rb sin 	φ
	× 	Gt
	· 	v2
	= 2 	G
	btv2 sin 	φ
	,

	2 	g
	r 	g
	2


which is independent of the radius of curvature. It may be inferred
that the resultant pressure is the same for any curved surface of the
same projected area, which deviates the water through the same
angle.

Case 2. Cylindrical Surface moving in the Direction AC with Velocity
u.—The relative velocity = v − u. The final velocity BF (fig. 162)
is found by combining the relative velocity BD = v − u tangential to
the surface with the velocity BE = u of the surface. The intensity of
normal pressure, as in the last case, is (G/g) t (v − u)2/r. The resultant
normal pressure R = 2(G/g) bt (v − u)2 sin 1⁄2φ. This resultant pressure
may be resolved into two components P and L, one parallel and the
other perpendicular to the direction of the vane’s motion. The
former is an effort doing work on the vane. The latter is a lateral
force which does no work.

P = R sin 1⁄2φ = (G/g) bt (v − u)2 (1 − cos φ);

 L = R cos 1⁄2φ = (G/g) bt (v − u)2 sin φ.


	

	Fig. 162.



	

	Fig. 163.


The work done by the jet on the vane is Pu = (G/g) btu (v − u)2(1 − cos φ),
which is a maximum when u = 1⁄3v. This result can also be
obtained by considering that the work done on the plane must be
equal to the energy lost by the water, when friction is neglected.

If φ = 180°, cos φ = −1, 1 − cos φ = 2; then P = 2(G/g) bt (v − u)2,
the same result as for a concave cup.

§ 161. Position which a Movable Plane takes in Flowing Water.—When
a rectangular plane, movable about an axis parallel to one of
its sides, is placed in an indefinite
current of fluid, it
takes a position such that the
resultant of the normal pressures
on the two sides of the
axis passes through the axis.
If, therefore, planes pivoted
so that the ratio a/b (fig. 163)
is varied are placed in water,
and the angle they make with
the direction of the stream is
observed, the position of the
resultant of the pressures on
the plane is determined for
different angular positions. Experiments of this kind have been
made by Hagen. Some of his results are given in the following
table:—


	  	Larger plane. 	Smaller Plane.

	a/b = 1.0 	φ = ... 	φ = 90°

	0.9 	75° 	721⁄2°

	0.8 	60° 	57°

	0.7 	48° 	43°

	0.6 	25° 	29°

	0.5 	13° 	13°

	0.4 	8° 	61⁄2°

	0.3 	6° 	..

	0.2 	4° 	..



§ 162. Direct Action distinguished from Reaction (Rankine, Steam
Engine, § 147).

The pressure which a jet exerts on a vane can be distinguished
into two parts, viz∴—

(1) The pressure arising from changing the direct component of
the velocity of the water into the velocity of the vane. In fig.
153, § 154, ab cos bae is the direct component of the water’s velocity,
or component in the direction of motion of vane. This is changed
into the velocity ae of the vane. The pressure due to direct impulse
is then

P1 = GQ (ab cos bae − ae) / g.

For a flat vane moving normally, this direct action is the only action
producing pressure on the vane.

(2) The term reaction is applied to the additional action due to
the direction and velocity with which the water glances off the
vane. It is this which is diminished by the friction between the
water and the vane. In Case 2, § 160, the direct pressure is

P1 = Gbt (v − u)2 / g.

That due to reaction is

P2 = −Gbt (v − u)2 cos φ / g.

If φ < 90°, the direct component of the water’s motion is not
wholly converted into the velocity of the vane, and the whole

pressure due to direct impulse is not obtained. If φ > 90°, cos φ is
negative and an additional pressure due to reaction is obtained.


	

	Fig. 164.


§ 163. Jet Propeller.—In the case of vessels propelled by a jet of
water (fig. 164), driven sternwards from orifices at the side of the
vessel, the water, originally at rest outside
the vessel, is drawn into the ship
and caused to move with the forward
velocity V of the ship. Afterwards it is
projected sternwards from the jets with
a velocity v relatively to the ship, or
v − V relatively to the earth. If Ω is
the total sectional area of the jets, Ωv is
the quantity of water discharged per
second. The momentum generated per
second in a sternward direction is
(G/g) Ωv (v − V), and this is equal to the forward acting reaction P
which propels the ship.

The energy carried away by the water

= 1⁄2 (G/g) Ωv (v − V)2.

(1)

The useful work done on the ship

PV = (G/g) Ωv (v − V) V.

(2)

Adding (1) and (2), we get the whole work expended on the water,
neglecting friction:—

W = 1⁄2 (G/g) Ωv (v2 − V2).

Hence the efficiency of the jet propeller is

PV/W = 2V / (v + V).

(3)

This increases towards unity as v approaches V. In other words,
the less the velocity of the jets exceeds that of the ship, and therefore
the greater the area of the orifice of discharge, the greater is the
efficiency of the propeller.

In the “Waterwitch” v was about twice V. Hence in this case
the theoretical efficiency of the propeller, friction neglected, was
about 2⁄3.


	

	Fig. 165.


§ 164. Pressure of a Steady Stream in a Uniform Pipe on a Plane
normal to the Direction of Motion.—Let CD (fig. 165) be a plane
placed normally to the stream which, for simplicity, may be supposed
to flow horizontally. The fluid filaments are deviated in
front of the plane, form a contraction at A1A1, and converge again,
leaving a mass of eddying water behind the plane. Suppose the
section A0A0 taken at a point where the parallel motion has not
begun to be disturbed, and A2A2 where the parallel motion is re-established.
Then since the same quantity of water with the same
velocity passes A0A0, A2A2 in any given time, the external forces
produce no change of momentum on the mass A0A0A2A2, and must
therefore be in equilibrium. If Ω is the section of the stream at
A0A0 or A2A2, and ω the area of the plate CD, the area of the contracted
section of the stream at A1A1 will be cc(Ω − ω), where cc is the
coefficient of contraction. Hence, if v is the velocity at A0A0 or A2A2,
and v1 the velocity at A1A1,

vΩ = ccv (Ω − ω);

∴ v1 = vΩ / cc (Ω − ω).

(1)

Let p0, p1, p2 be the pressures at the three sections. Applying
Bernoulli’s theorem to the sections A0A0 and A1A1,


	p0
	+ 	v2
	= 	p1
	+ 	v12
	.

	G 	2g
	G 	2g


Also, for the sections A1A1 and A2A2, allowing that the head due
to the relative velocity v1 − v is lost in shock:—


	p1
	+ 	v12
	= 	p2
	+ 	v2
	+ 	(v1 − v)2
	;

	G 	2g
	G 	2g
	2g


∴ p0 − p2 = G (v1 − v)2 / 2g;

(2)

or, introducing the value in (1),


	p0 − p2 = 	G
	( 	Ω
	− 1 ) 	2
	v2

	2g 	cc (Ω − ω)
	 


(3)

Now the external forces in the direction of motion acting on the
mass A0A0A2A2 are the pressures p0Ω1 − p2Ω at the ends, and the
reaction −R of the plane on the water, which is equal and opposite
to the pressure of the water on the plane. As these are in equilibrium,

(p0 − p2) Ω − R = 0;


	∴ R = GΩ ( 	Ω
	− 1 ) 	2
	  	v2
	;

	cc (Ω − ω) 	 
	2g


(4)

an expression like that for the pressure of an isolated jet on an
indefinitely extended plane, with the addition of the term in brackets,
which depends only on the areas of the stream and the plane. For
a given plane the expression in brackets diminishes as Ω increases.
If Ω/ω = ρ, the equation (4) becomes


	R = Gω 	v2
	{ ρ ( 	ρ
	− 1 ) 	2
	},

	2g 	cc (ρ − 1)
	 


(4a)

which is of the form

R = Gω (v2/2g) K,

where K depends only on the ratio of the sections of the stream and
plane.

For example, let cc = 0.85, a value which is probable, if we allow
that the sides of the pipe act as internal borders to an orifice. Then


	K = ρ ( 1.176 	ρ
	− 1 ) 	2
	.

	ρ − 1 	 



	ρ =    	K =

	1    	∞

	2    	3.66

	3    	1.75

	4    	1.29

	5    	1.10

	10    	.94

	50    	2.00

	100    	3.50



The assumption that the coefficient of contraction cc is constant
for different values of ρ is probably only true when ρ is not very
large. Further, the increase of K for large values of ρ is contrary to
experience, and hence it may be inferred that the assumption that
all the filaments have a common velocity v1 at the section A1A1 and
a common velocity v at the section A2A2 is not true when the stream
is very much larger than the plane. Hence, in the expression

R = KGωv2 / 2g,

K must be determined by experiment in each special case. For a
cylindrical body putting ω for the section, cc for the coefficient of
contraction, cc (Ω − ω) for the area of the stream at
A1A1,

v1 = vΩ / cc (Ω − ω); v2 = vΩ / (Ω −ω);

or, putting ρ = Ω/ω,

v1 = vρ / cc (ρ − 1), v2 = vρ / (ρ − 1).

Then

R = K1Gωv2 / 2g,

where


	K1 = ρ { ( 	ρ
	) 	2
	( 	1
	− 1 ) 	2
	+ ( 	ρ
	− 1 ) 	2
	}.

	ρ − 1 	 
	cc 	 
	ρ − 1 	 


Taking cc = 0.85 and ρ = 4, K1 = 0.467, a value less than before.
Hence there is less pressure on the cylinder than on the thin plane.


	

	Fig. 166.


§ 165. Distribution of Pressure on a Surface on which a Jet impinges
normally.—The principle of momentum gives readily enough the
total or resultant pressure of a jet impinging on a plane surface, but
in some cases it is useful to know the distribution of the pressure.
The problem in the case in which
the plane is struck normally, and
the jet spreads in all directions, is
one of great complexity, but even
in that case the maximum intensity
of the pressure is easily assigned.
Each layer of water flowing from
an orifice is gradually deviated
(fig. 166) by contact with the surface,
and during deviation exercises
a centrifugal pressure towards the
axis of the jet. The force exerted
by each small mass of water is
normal to its path and inversely as
the radius of curvature of the path.
Hence the greatest pressure on the
plane must be at the axis of the jet, and the pressure must decrease
from the axis outwards, in some such way as is shown by the curve
of pressure in fig. 167, the branches of the curve being probably
asymptotic to the plane.

For simplicity suppose the jet is a vertical one. Let h1 (fig. 167) be
the depth of the orifice from the free surface, and v1 the velocity of
discharge. Then, if ω is the area of the orifice, the quantity of water
impinging on the plane is obviously

Q = ωv1 = ω √ (2gh1);

that is, supposing the orifice rounded, and neglecting the coefficient
of discharge.

The velocity with which the fluid reaches the plane is, however,
greater than this, and may reach the value

v = √ (2gh);

where h is the depth of the plane below the free surface. The
external layers of fluid subjected throughout, after leaving the
orifice, to the atmospheric pressure will attain the velocity v, and
will flow away with this velocity unchanged except by friction.
The layers towards the interior of the jet, being subjected to a pressure
greater than atmospheric pressure, will attain a less velocity, and so
much less as they are nearer the centre of the jet. But the pressure

can in no case exceed the pressure v2/2g or h measured in feet of
water, or the direction of motion of the water would be reversed, and
there would be reflux. Hence the maximum intensity of the pressure
of the jet on the plane is h ft. of water. If the pressure curve is
drawn with pressures represented by feet of water, it will touch the
free water surface at the centre of the jet.
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Suppose the pressure curve rotated so as to form a solid of revolution.
The weight of water contained in that solid is the total
pressure of the jet on the surface, which has already been determined.
Let V = volume of this solid, then GV is its weight in pounds.
Consequently

GV = (G/g) ωv1v;

 V = 2ω √ (hh1).

We have already, therefore, two conditions to be satisfied by the
pressure curve.


	

	Fig. 168.—Curves of Pressure of Jets impinging normally on a Plane.


Some very interesting experiments on the distribution of pressure
on a surface struck by a jet have been made by J. S. Beresford
(Prof. Papers on Indian Engineering, No. cccxxii.), with a view to
afford information as to the forces acting on the aprons of weirs.
Cylindrical jets 1⁄2 in. to 2 in. diameter, issuing from a vessel in
which the water level was constant, were allowed to fall vertically
on a brass plate 9 in. in diameter. A small hole in the brass plate
communicated by a flexible tube with a vertical pressure column.
Arrangements were made by which this aperture could be moved
1⁄20 in. at a time across the area struck by the jet. The height of the
pressure column, for each position of the aperture, gave the pressure
at that point of the area struck by the jet. When the aperture was
exactly in the axis of the jet, the pressure column was very nearly
level with the free surface in the reservoir supplying the jet; that is,
the pressure was very nearly v2/2g. As the aperture moved away from
the axis of the jet, the pressure diminished, and it became insensibly
small at a distance from the axis of the jet about equal to the diameter
of the jet. Hence, roughly, the pressure due to the jet extends
over an area about four times the area of section of the jet.

Fig. 168 shows the pressure curves obtained in three experiments
with three jets of the sizes shown, and with the free surface level in
the reservoir at the heights marked.


	Height from Free

Surface to Brass

Plate in inches. 	Distance from Axis

of Jet in inches. 	Pressure in inches

of Water.

	Experiment 1. Jet .475 in. diameter.

	43 	0 	40.5

	” 	.05 	39.40

	” 	.1  	37.5-39.5

	” 	.15 	35 

	” 	.2  	33.5-37

	” 	.25 	31 

	” 	.3  	21-27

	” 	.35 	21 

	” 	.4  	14 

	” 	.45 	 8 

	” 	.5  	 3.5

	” 	.55 	 1 

	” 	.6  	 0.5

	” 	.65 	 0 

	Experiment 2. Jet .988 in. diameter.

	42.15 	0  	42 

	” 	.05 	41.9

	” 	.1  	41.5-41.8

	” 	.15 	41 

	” 	.2  	40.3

	” 	.25 	39.2

	” 	.3  	37.5

	” 	.35 	34.8

	” 	.45 	27 

	42.25 	.5  	23 

	” 	.55 	18.5

	” 	.6  	13 

	” 	.65 	 8.3

	” 	.7  	 5 

	” 	.75 	 3 

	” 	.8  	 2.2

	42.15 	.85 	 1.6

	” 	.95 	 1 

	Experiment 3. Jet 19.5 in. diameter.

	27.15 	 0  	26.9

	” 	 .08 	26.9

	” 	 .13 	26.8

	” 	 .18 	26.5-26.6

	” 	 .23 	26.4-26.5

	” 	 .28 	26.3-26.6

	27 	 .33 	26.2

	” 	 .38 	25.9

	” 	 .43 	25.5

	” 	 .48 	25 

	” 	 .53 	24.5

	” 	 .58 	24 

	” 	 .63 	23.3

	” 	 .68 	22.5

	” 	 .73 	21.8

	” 	 .78 	21 

	” 	 .83 	20.3

	” 	 .88 	19.3

	” 	 .93 	18 

	” 	 .98 	17 

	26.5 	1.13 	13.5

	” 	1.18 	12.5

	” 	1.23 	10.8

	” 	1.28 	 9.5

	” 	1.33 	 8 

	” 	1.38 	 7 

	” 	1.43 	 6.3

	” 	1.48 	 5 

	” 	1.53 	 4.3

	” 	1.58 	 3.5

	” 	1.9  	 2 



As the general form of the pressure curve has been already indicated,
it may be assumed that its equation is of the form

y = ab−x2.

But it has already been shown that for x = 0, y = h, hence a = h.
To determine the remaining constant, the other condition may be
used, that the solid formed by rotating the pressure curve represents
the total pressure on the plane. The volume of the solid is

V = ∫∞0 2πxy dx

= 2πh ∫∞0 b−x2x dx

= (πh / loge b) [ −b−x2 ]∞0

= πh / loge b.

Using the condition already stated,

2ω √ (hh1) = πh / loge b,

 logε b = (π/2ω) √ (h/h1).

Putting the value of b in (2) in eq. (1), and also r for the radius of
the jet at the orifice, so that ω = πr2, the equation to the pressure
curve is

y = hε−1/2 √(h / h1) (x2 / r2).

§ 166. Resistance of a Plane moving through a Fluid, or Pressure
of a Current on a Plane.—When a thin plate moves through the
air, or through an indefinitely large mass of still water, in a direction
normal to its surface, there is an excess of pressure on the anterior
face and a diminution of pressure on the posterior face. Let v be
the relative velocity of the plate and fluid, Ω the area of the plate, G
the density of the fluid, h the height due to the velocity, then the
total resistance is expressed by the equation

R = fGΩv2 / 2g pounds = fGΩh;

where f is a coefficient having about the value 1.3 for a plate moving
in still fluid, and 1.8 for a current impinging on a fixed plane, whether
the fluid is air or water. The difference in the value of the coefficient
in the two cases is perhaps due to errors of experiment. There is a
similar resistance to motion in the case of all bodies of   “unfair“
form, that is, in which the surfaces over which the water slides are
not of gradual and continuous curvature.

The stress between the fluid and plate arises chiefly in this way.

The streams of fluid deviated in front of the plate, supposed for
definiteness to be moving through the fluid, receive from it forward
momentum. Portions of this forward moving water are thrown off
laterally at the edges of the plate, and diffused through the surrounding
fluid, instead of falling to their original position behind the
plate. Other portions of comparatively still water are dragged into
motion to fill the space left behind the plate; and there is thus a
pressure less than hydrostatic pressure at the back of the plate. The
whole resistance to the motion of the plate is the sum of the excess of
pressure in front and deficiency of pressure behind. This resistance
is independent of any friction or viscosity in the fluid, and is due
simply to its inertia resisting a sudden change of direction at the
edge of the plate.

Experiments made by a whirling machine, in which the plate is
fixed on a long arm and moved circularly, gave the following values
of the coefficient f. The method is not free from objection, as the
centrifugal force causes a flow outwards across the plate.


	Approximate

Area of Plate

in sq. ft. 	Values of f.

	Borda. 	Hutton. 	Thibault.

	0.13 	1.39 	1.24 	..

	0.25 	1.49 	1.43 	1.525

	0.63 	1.64 	.. 	..

	1.11 	.. 	.. 	1.784



There is a steady increase of resistance with the size of the plate,
in part or wholly due to centrifugal action.

P. L. G. Dubuat (1734-1809) made experiments on a plane 1 ft.
square, moved in a straight line in water at 3 to 61⁄2 ft. per second.
Calling m the coefficient of excess of pressure in front, and n the
coefficient of deficiency of pressure behind, so that f = m + n, he
found the following values:—

m = 1; n = 0.433; f = 1.433.

The pressures were measured by pressure columns. Experiments
by A. J. Morin (1795-1880), G. Piobert (1793-1871) and I. Didion
(1798-1878) on plates of 0.3 to 2.7 sq. ft. area, drawn vertically
through water, gave f = 2.18; but the experiments were made in a
reservoir of comparatively small depth. For similar plates moved
through air they found f = 1.36, a result more in accordance with
those which precede.

For a fixed plane in a moving current of water E. Mariotte found
f = 1.25. Dubuat, in experiments in a current of water like those
mentioned above, obtained the values m = 1.186; n = 0.670; f =
1.856. Thibault exposed to wind pressure planes of 1.17 and 2.5
sq. ft. area, and found f to vary from 1.568 to 2.125, the mean value
being f = 1.834, a result agreeing well with Dubuat.
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§ 167. Stanton’s Experiments on the Pressure of Air on Surfaces.—At
the National Physical Laboratory, London, T. E. Stanton carried
out a series of experiments on the distribution of pressure on surfaces
in a current of air passing through an air trunk. These were on a
small scale but with exceptionally accurate means of measurement.
These experiments differ from those already given in that the plane
is small relatively to the cross section of the current (Proc. Inst.
Civ. Eng. clvi., 1904). Fig. 169 shows the distribution of pressure
on a square plate. ab is the plate in
vertical section. acb the distribution
of pressure on the windward and adb
that on the leeward side of the central
section. Similarly aeb is the distribution
of pressure on the windward and
afb on the leeward side of a diagonal
section. The intensity of pressure at
the centre of the plate on the windward
side was in all cases p = Gv2/2g ℔ per
sq. ft., where G is the weight of a cubic
foot of air and v the velocity of the
current in ft. per sec. On the leeward
side the negative pressure is uniform
except near the edges, and its value
depends on the form of the plate. For
a circular plate the pressure on the
leeward side was 0.48 Gv2/2g and for
a rectangular plate 0.66 Gv2/2g. For
circular or square plates the resultant
pressure on the plate was P = 0.00126
v2 ℔ per sq. ft. where v is the velocity
of the current in ft. per sec. On a long
narrow rectangular plate the resultant pressure was nearly 60%
greater than on a circular plate. In later tests on larger planes in
free air, Stanton found resistances 18% greater than those observed
with small planes in the air trunk.

§ 168. Case when the Direction of Motion is oblique to the Plane.—The
determination of the pressure between a fluid and surface in this
case is of importance in many practical questions, for instance, in
assigning the load due to wind pressure on sloping and curved roofs,
and experiments have been made by Hutton, Vince, and Thibault on
planes moved circularly through air and water on a whirling machine.
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Let AB (fig. 170) be a plane moving in the direction R making
an angle φ with the plane. The resultant pressure between the fluid
and the plane will be a normal
pressure N. The component R
of this normal pressure is the
resistance to the motion of the
plane and the other component
L is a lateral force resisted by
the guides which support the
plane. Obviously

R = N sin φ;

L = N cos φ.

In the case of wind pressure on
a sloping roof surface, R is the
horizontal and L the vertical
component of the normal pressure.

In experiments with the whirling machine it is the resistance to
motion, R, which is directly measured. Let P be the pressure on a
plane moved normally through a fluid. Then, for the same plane
inclined at an angle φ to its direction of motion, the resistance was
found by Hutton to be

R = P (sin φ)1.842 cos φ.

A simpler and more convenient expression given by Colonel
Duchemin is

R = 2P sin2 φ / (1 + sin2 φ).

Consequently, the total pressure between the fluid and plane is

N = 2P sin φ / (1 + sin2 φ) = 2P / (cosec φ + sin φ),

and the lateral force is

L = 2P sin φ cos φ / (1 + sin2 φ).

In 1872 some experiments were made for the Aeronautical Society
on the pressure of air on oblique planes. These plates, of 1 to 2 ft.
square, were balanced by ingenious mechanism designed by F. H.
Wenham and Spencer Browning, in such a manner that both the
pressure in the direction of the air current and the lateral force were
separately measured. These planes were placed opposite a blast
from a fan issuing from a wooden pipe 18 in. square. The pressure of
the blast varied from 6⁄10 to 1 in. of water pressure. The following are
the results given in pounds per square foot of the plane, and a comparison
of the experimental results with the pressures given by
Duchemin’s rule. These last values are obtained by taking P = 3.31,
the observed pressure on a normal surface:—


	Angle between Plane and Direction of Blast 	15° 	20° 	60° 	90°

	Horizontal pressure R 	0.4 	0.61 	2.73 	3.31

	Lateral pressure L 	1.6 	1.96 	1.26 	..

	Normal pressure √ (L2 + R2) 	1.65 	2.05 	3.01 	3.31

	Normal pressure by Duchemin’s rule 	1.605 	2.027 	3.276 	3.31





Water Motors

In every system of machinery deriving energy from a natural
waterfall there exist the following parts:—

1. A supply channel or head race, leading the water from the
highest accessible level to the site of the machine. This may be
an open channel of earth, masonry or wood, laid at as small a
slope as is consistent with the delivery of the necessary supply of
water, or it may be a closed cast or wrought-iron pipe, laid at
the natural slope of the ground, and about 3 ft. below the surface.
In some cases part of the head race is an open channel, part
a closed pipe. The channel often starts from a small storage
reservoir, constructed near the stream supplying the water motor,
in which the water accumulates when the motor is not working.
There are sluices or penstocks by which the supply can be cut
off when necessary.

2. Leading from the motor there is a tail race, culvert, or
discharge pipe delivering the water after it has done its work
at the lowest convenient level.

3. A waste channel, weir, or bye-wash is placed at the origin
of the head race, by which surplus water, in floods, escapes.

4. The motor itself, of one of the kinds to be described presently,
which either overcomes a useful resistance directly, as in the case
of a ram acting on a lift or crane chain, or indirectly by actuating
transmissive machinery, as when a turbine drives the shafting,
belting and gearing of a mill. With the motor is usually combined
regulating machinery for adjusting the power and speed
to the work done. This may be controlled in some cases by
automatic governing machinery.



§ 169. Water Motors with Artificial Sources of Energy.—The
great convenience and simplicity of water motors has led to their
adoption in certain cases, where no natural source of water
power is available. In these cases, an artificial source of water
power is created by using a steam-engine to pump water to a
reservoir at a great elevation, or to pump water into a closed
reservoir in which there is great pressure. The water flowing
from the reservoir through hydraulic engines gives back the
energy expended, less so much as has been wasted by friction.
Such arrangements are most useful where a continuously acting
steam engine stores up energy by pumping the water, while the
work done by the hydraulic engines is done intermittently.


§ 170. Energy of a Water-fall.—Let Ht be the total fall of level from
the point where the water is taken from a natural stream to the
point where it is discharged into it again. Of this total fall a portion,
which can be estimated independently, is expended in overcoming
the resistances of the head and tail races or the supply and discharge
pipes. Let this portion of head wasted be ɧr. Then the available
head to work the motor is H = Ht − ɧr. It is this available head which
should be used in all calculations of the proportions of the motor.
Let Q be the supply of water per second. Then GQH foot-pounds
per second is the gross available work of the fall. The power of the
fall may be utilized in three ways. (a) The GQ pounds of water may
be placed on a machine at the highest level, and descending in contact
with it a distance of H ft., the work done will be (neglecting
losses from friction or leakage) GQH foot-pounds per second. (b)
Or the water may descend in a closed pipe from the higher to the
lower level, in which case, with the same reservation as before, the
pressure at the foot of the pipe will be p = GH pounds per square foot.
If the water with this pressure acts on a movable piston like that
of a steam engine, it will drive the piston so that the volume described
is Q cubic feet per second. Then the work done will be pQ = GHQ
foot-pounds per second as before. (c) Or lastly, the water may be
allowed to acquire the velocity v = √2gH by its descent. The kinetic
energy of Q cubic feet will then be 1⁄2GQv2/g = GQH, and if the water
is allowed to impinge on surfaces suitably curved which bring it
finally to rest, it will impart to these the same energy as in the
previous cases. Motors which receive energy mainly in the three
ways described in (a), (b), (c) may be termed gravity, pressure and
inertia motors respectively. Generally, if Q ft. per second of water
act by weight through a distance h1, at a pressure p due to h2 ft. of
fall, and with a velocity v due to h3 ft. of fall, so that h1 + h2 + h3 = H,
then, apart from energy wasted by friction or leakage or imperfection
of the machine, the work done will be

GQh1 + pQ + (G/g) Q (v2/2g) = GQH foot pounds,

the same as if the water acted simply by its weight while descending
H ft.



§ 171. Site for Water Motor.—Wherever a stream flows from
a higher to a lower level it is possible to erect a water motor.
The amount of power obtainable depends on the available head
and the supply of water. In choosing a site the engineer will
select a portion of the stream where there is an abrupt natural
fall, or at least a considerable slope of the bed. He will have
regard to the facility of constructing the channels which are to
convey the water, and will take advantage of any bend in the river
which enables him to shorten them. He will have accurate
measurements made of the quantity of water flowing in the
stream, and he will endeavour to ascertain the average quantity
available throughout the year, the minimum quantity in dry
seasons, and the maximum for which bye-wash channels must
be provided. In many cases the natural fall can be increased
by a dam or weir thrown across the stream. The engineer will
also examine to what extent the head will vary in different
seasons, and whether it is necessary to sacrifice part of the fall
and give a steep slope to the tail race to prevent the motor being
drowned by backwater in floods. Streams fed from lakes which
form natural reservoirs or fed from glaciers are less variable than
streams depending directly on rainfall, and are therefore advantageous
for water-power purposes.


§ 172. Water Power at Holyoke, U.S.A.—About 85 m. from the
mouth of the Connecticut river there was a fall of about 60 ft. in
a short distance, forming what were called the Grand Rapids, below
which the river turned sharply, forming a kind of peninsula on which
the city of Holyoke is built. In 1845 the magnitude of the water-power
available attracted attention, and it was decided to build a
dam across the river. The ordinary flow of the river is 6000 cub. ft.
per sec., giving a gross power of 30,000 h.p. In dry seasons the
power is 20,000 h.p., or occasionally less. From above the dam a
system of canals takes the water to mills on three levels. The first
canal starts with a width of 140 ft. and depth of 22 ft., and supplies
the highest range of mills. A second canal takes the water which
has driven turbines in the highest mills and supplies it to a second
series of mills. There is a third canal on a still lower level supplying
the lowest mills. The water then finds its way back to the river.
With the grant of a mill site is also leased the right to use the water-power.
A mill-power is defined as 38 cub. ft. of water per sec.
during 16 hours per day on a fall of 20 ft. This gives about 60 h.p.
effective. The charge for the power water is at the rate of 20s. per
h.p. per annum.



§ 173. Action of Water in a Water Motor.—Water motors may
be divided into water-pressure engines, water-wheels and
turbines.

Water-pressure engines are machines with a cylinder and piston
or ram, in principle identical with the corresponding part of a
steam-engine. The water is alternately admitted to and discharged
from the cylinder, causing a reciprocating action of the
piston or plunger. It is admitted at a high pressure and discharged
at a low one, and consequently work is done on the piston.
The water in these machines never acquires a high velocity, and
for the most part the kinetic energy of the water is wasted.
The useful work is due to the difference of the pressure of
admission and discharge, whether that pressure is due to the
weight of a column of water of more or less considerable height,
or is artificially produced in ways to be described presently.

Water-wheels are large vertical wheels driven by water falling
from a higher to a lower level. In most water-wheels, the water
acts directly by its weight loading one side of the wheel and so
causing rotation. But in all water-wheels a portion, and in some
a considerable portion, of the work due to gravity is first employed
to generate kinetic energy in the water; during its
action on the water-wheel the velocity of the water diminishes,
and the wheel is therefore in part driven by the impulse due to
the change of the water’s momentum. Water-wheels are therefore
motors on which the water acts, partly by weight, partly by
impulse.

Turbines are wheels, generally of small size compared with
water wheels, driven chiefly by the impulse of the water. Before
entering the moving part of the turbine, the water is allowed
to acquire a considerable velocity; during its action on the
turbine this velocity is diminished, and the impulse due to the
change of momentum drives the turbine.

In designing or selecting a water motor it is not sufficient to
consider only its efficiency in normal conditions of working.
It is generally quite as important to know how it will act with
a scanty water supply or a diminished head. The greatest
difference in water motors is in their adaptability to varying
conditions of working.

Water-pressure Engines.

§ 174. In these the water acts by pressure either due to the
height of the column in a supply pipe descending from a high-level
reservoir, or created by pumping. Pressure engines were
first used in mine-pumping on waterfalls of greater height than
could at that time be utilized by water wheels. Usually they
were single acting, the water-pressure lifting the heavy pump
rods which then made the return or pumping stroke by their
own weight. To avoid losses by fluid friction and shock the
velocity of the water in the pipes and passages was restricted
to from 3 to 10 ft. per second, and the mean speed of plunger to
1 ft. per second. The stroke was long and the number of strokes
3 to 6 per minute. The pumping lift being constant, such engines
worked practically always at full load, and the efficiency was
high, about 84%. But they were cumbrous machines. They
are described in Weisbach’s Mechanics of Engineering.

The convenience of distributing energy from a central station
to scattered working-points by pressure water conveyed in pipes—a
system invented by Lord Armstrong—has already been
mentioned. This system has led to the development of a great
variety of hydraulic pressure engines of very various types.
The cost of pumping the pressure water to some extent restricts
its use to intermittent operations, such as working lifts and
cranes, punching, shearing and riveting machines, forging and
flanging presses. To keep down the cost of the distributing

mains very high pressures are adopted, generally 700 ℔ per
sq. in. or 1600 ft. of head or more.

In a large number of hydraulic machines worked by water at
high pressure, especially lifting machines, the motor consists of a
direct, single acting ram and cylinder. In a few cases double-acting
pistons and cylinders are used; but they involve a
water-tight packing of the piston not easily accessible. In some
cases pressure engines are used to obtain rotative movement,
and then two double-acting cylinders or three single-acting
cylinders are used, driving a crank shaft. Some double-acting
cylinders have a piston rod half the area of the piston. The
pressure water acts continuously on the annular area in front
of the piston. During the forward stroke the pressure on the
front of the piston balances half the pressure on the back. During
the return stroke the pressure on the front is unopposed. The
water in front of the piston is not exhausted, but returns to the
supply pipe. As the frictional losses in a fluid are independent
of the pressure, and the work done increases directly as the
pressure, the percentage loss decreases for given velocities of
flow as the pressure increases. Hence for high-pressure machines
somewhat greater velocities are permitted in the passages than
for low-pressure machines. In supply mains the velocity is
from 3 to 6 ft. per second, in valve passages 5 to 10 ft. per second,
or in extreme cases 20 ft. per second, where there is less object
in economizing energy. As the water is incompressible, slide
valves must have neither lap nor lead, and piston valves are
preferable to ordinary slide valves. To prevent injurious compression
from exhaust valves closing too soon in rotative engines
with a fixed stroke, small self-acting relief valves are fitted to the
cylinder ends, opening outwards against the pressure into the
valve chest. Imprisoned water can then escape without over-straining
the machines.

In direct single-acting lift machines, in which the stroke is
fixed, and in rotative machines at constant speed it is obvious
that the cylinder must be filled at each stroke irrespective of the
amount of work to be done. The same amount of water is used
whether much or little work is done, or whether great or small
weights are lifted. Hence while pressure engines are very
efficient at full load, their efficiency decreases as the load decreases.
Various arrangements have been adopted to diminish
this defect in engines working with a variable load. In lifting
machinery there is sometimes a double ram, a hollow ram
enclosing a solid ram. By simple arrangements the solid ram
only is used for small loads, but for large loads the hollow ram is
locked to the solid ram, and the two act as a ram of larger area.
In rotative engines the case is more difficult. In Hastie’s and
Rigg’s engines the stroke is automatically varied with the load,
increasing when the load is large and decreasing when it is small.
But such engines are complicated and have not achieved much
success. Where pressure engines are used simplicity is generally
a first consideration, and economy is of less importance.


§ 175. Efficiency of Pressure Engines.—It is hardly possible to form
a theoretical expression for the efficiency of pressure engines, but
some general considerations are useful. Consider the case of a long
stroke hydraulic ram, which has a fairly constant velocity v during
the stroke, and valves which are fairly wide open during most of the
stroke. Let r be the ratio of area of ram to area of valve passage,
a ratio which may vary in ordinary cases from 4 to 12. Then the
loss in shock of the water entering the cylinder will be (r − 1)2v2/2g in
ft. of head. The friction in the supply pipe is also proportional to
v2. The energy carried away in exhaust will be proportional to v2.
Hence the total hydraulic losses may be taken to be approximately
ζv2/2g ft., where ζ is a coefficient depending on the proportions of the
machine. Let f be the friction of the ram packing and mechanism
reckoned in ℔ per sq. ft. of ram area. Then if the supply-pipe
pressure driving the machine is p ℔ per sq. ft., the effective working
pressure will be

p − Gζv2 / 2g − f ℔ per sq. ft.

Let A be the area of the ram in sq. ft., v its velocity in ft. per sec.
The useful work done will be

(p − Gζv2 / 2g − f) Av ft. ℔ per sec.,

and the efficiency of the machine will be

η = (p − Gζv2 / 2g − f) / p.
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This shows that the efficiency increases with the pressure p, and
diminishes with the speed v, other things being the same. If in
regulating the engine for varying load the pressure is throttled,
part of the available head is destroyed at the throttle valve, and
p in the bracket above is reduced. Direct-acting hydraulic lifts,
without intermediate gearing, may
have an efficiency of 95% during the
working stroke. If a hydraulic jigger is
used with ropes and sheaves to change
the speed of the ram to the speed of
the lift, the efficiency may be only
50%. E. B. Ellington has given the
efficiency of lifts with hydraulic
balance at 85% during the working
stroke. Large pressure engines have
an efficiency of 85%, but small rotative
engines probably not more than
50% and that only when fully loaded.



§ 176. Direct-Acting Hydraulic
Lift (fig. 171).—This is the
simplest of all kinds of hydraulic
motor. A cage W is lifted directly
by water pressure acting in a
cylinder C, the length of which is
a little greater than the lift. A
ram or plunger R of the same
length is attached to the cage.
The water-pressure admitted by a
cock to the cylinder forces up the
ram, and when the supply valve is
closed and the discharge valve
opened, the ram descends. In
this case the ram is 9 in. diameter,
with a stroke of 49 ft. It consists
of lengths of wrought-iron pipe
screwed together perfectly water-tight,
the lower end being closed
by a cast-iron plug. The ram
works in a cylinder 11 in. diameter
of 9 ft. lengths of flanged
cast-iron pipe. The ram passes
water-tight through the cylinder
cover, which is provided with
double hat leathers to prevent
leakage outwards or inwards. As
the weight of the ram and cage is
much more than sufficient to cause
a descent of the cage, part of the
weight is balanced. A chain attached
to the cage passes over a
pulley at the top of
the lift, and carries
at its free end a
balance weight B,
working in T iron
guides. Water is admitted
to the cylinder
from a 4-in. supply
pipe through a two-way
slide, worked by
a rack, spindle and
endless rope. The
lift works under 73
ft. of head, and lifts
1350 lb at 2 ft. per
second. The efficiency
is from 75 to
80%.


The principal prejudicial
resistance to
the motion of a ram
of this kind is the friction
of the cup leathers,
which make the joint
between the cylinder
and ram. Some experiments
by John Hick give for the friction of these leathers
the following formula. Let F = the total friction in pounds;

d = diameter of ram in ft.; p = water-pressure in pounds per sq. ft.;
k a coefficient.

F = k p d

k = 0.00393 if the leathers are new or badly lubricated;

=  0.00262 if the leathers are in good condition and well lubricated.

Since the total pressure on the ram is P = 1⁄4πd2p, the fraction of the
total pressure expended in overcoming the friction of the leathers is
F/P = .005/d to .0033/d, d being in feet.

Let H be the height of the pressure column measured from the
free surface of the supply reservoir to the bottom of the ram in its
lowest position, Hb the height from the discharge reservoir to the
same point, h the height of the ram above its lowest point at any
moment, S the length of stroke, Ω the area of the ram, W the weight
of cage, R the weight of ram, B the weight of balance weight, w the
weight of balance chain per foot run, F the friction of the cup leather
and slides. Then, neglecting fluid friction, if the ram is rising the
accelerating force is

P1 = G (H − h) Ω − R − W + B − w (S − h) + wh − F,

and if the ram is descending

P2 = G (Hb − h) Ω + W + R − B + w (S − h) − wh − F.

If w = 1⁄2 GΩ, P1 and P2 are constant throughout the stroke; and
the moving force in ascending and descending is the same, if

B = W + R + wS − GΩ (H + Hb) / 2.

Using the values just found for w and B,

P1 = P2 = 1⁄2 GΩ (H − Hb) − F.

Let W + R + wS + B = U, and let P be the constant accelerating
force acting on the system, then the acceleration is (P/U)g. The
velocity at the end of the stroke is (assuming the friction to be
constant)

v = √ (2PgS / U);

and the mean velocity of ascent is 1⁄2v.
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§ 177. Armstrong’s Hydraulic Jigger.—This is simply a single-acting
hydraulic cylinder and ram, provided with sheaves so
as to give motion to a wire rope or chain. It is used in various
forms of lift and crane. Fig. 172 shows the arrangement. A
hydraulic ram or plunger B works in a
stationary cylinder A. Ram and cylinder
carry sets of sheaves over which passes a
chain or rope, fixed at one end to the
cylinder, and at the other connected over
guide pulleys to a lift or crane. For each
pair of pulleys, one on the cylinder and one
on the ram, the movement of the free end
of the rope is doubled compared with that
of the ram. With three pairs of pulleys the
free end of the rope has a movement equal
to six times the stroke of the ram, the force
exerted being in the inverse proportion.

§ 178. Rotative Hydraulic Engines.—Valve-gear
mechanism similar in principle to that
of steam engines can be applied to actuate
the admission and discharge valves, and the
pressure engine is then converted into a continuously-acting
motor.


Let H be the available fall to work the
engine after deducting the loss of head in the
supply and discharge pipes, Q the supply of
water in cubic feet per second, and η the
efficiency of the engine. Then the horse-power
of the engine is

H.P. = ηGQH / 550.

The efficiency of large slow-moving pressure engines is η = .66 to .8.
In small motors of this kind probably η is not greater than .5.
Let v be the mean velocity of the piston, then its diameter d is given
by the relation

Q = πd2v/4 in double-acting engines,

 = πd2v/8 in single-acting engines.

If there are n cylinders put Q/n for Q in these equations.



Small rotative pressure engines form extremely convenient
motors for hoists, capstans or winches, and for driving small
machinery. The single-acting engine has the advantage that
the pressure of the piston on the crank pin is always in one
direction; there is then no knocking as the dead centres are
passed. Generally three single-acting cylinders are used, so
that the engine will readily start in all positions, and the driving
effort on the crank pin is very uniform.
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Brotherhood Hydraulic Engine.—Three cylinders at angles of 120°
with each other are formed in one casting with the frame. The
plungers are hollow trunks, and the connecting rods abut in
cylindrical recesses in them and are connected to a common crank
pin. A circular valve disk with concentric segmental ports revolves
at the same rate as the crank over ports in the valve face common to
the three cylinders. Each cylinder is always in communication with
either an admission or exhaust port. The blank parts of the circular
valve close the admission and exhaust ports alternately. The fixed
valve face is of lignum vitae in a metal recess, and the revolving
valve of gun-metal. In the case of a small capstan engine the
cylinders are 31⁄2 in. diameter and 3 in. stroke. At 40 revs. per minute,
the piston speed is 31 ft.
per minute. The ports
are 1 in. diameter or 1⁄12
of the piston area, and
the mean velocity in
the ports 6.4 ft. per
sec. With 700 ℔ per
sq. in. water pressure
and an efficiency of
50%, the engine is
about 3 h.p. A common
arrangement is to
have three parallel
cylinders acting on a
three-throw crank shaft,
the cylinders oscillating
on trunnions.

Hastie’s Engine.—Fig.
173 shows a similar
engine made by Messrs
Hastie of Greenock. G,
G, G are the three
plungers which pass out
of the cylinders through cup leathers, and act on the same crank pin.
A is the inlet pipe which communicates with the cock B. This cock
controls the action of the engine, being so constructed that it acts as
a reversing valve when the handle C is in its extreme positions and
as a brake when in its middle position. With the handle in its
middle position, the ports of the cylinders are in communication
with the exhaust. Two passages are formed in the framing leading
from the cock B to the ends of the cylinders, one being in communication
with the supply pipe A, the other with the discharge
pipe Q. These passages end as shown at E. The oscillation of the
cylinders puts them
alternately in communication
with each of
these passages, and thus
the water is alternately
admitted and exhausted.

In any ordinary rotative
engine the length of
stroke is invariable.
Consequently the consumption
of water depends
simply on the
speed of the engine,
irrespective of the effort overcome. If the power of the engine
must be varied without altering the number of rotations, then
the stroke must be made variable. Messrs Hastie have contrived
an exceedingly ingenious method of varying the stroke
automatically, in proportion to the amount of work to be done (fig.
174). The crank pin I
is carried in a slide H
moving in a disk M.
In this is a double
cam K acting on two
small steel rollers J,
L attached to the
slide H. If the cam
rotates it moves the
slide and increases or
decreases the radius of
the circle in which the
crank pin I rotates.
The disk M is keyed
on a hollow shaft surrounding
the driving
shaft P, to which the
cams are attached.
The hollow shaft N
has two snugs to
which the chains RR
are attached (fig. 175).
The shaft P carries the
spring case SS to which
also are attached the
other ends of the chains. When the engine is at rest the springs
extend themselves, rotating the hollow shaft N and the frame M,
so as to place the crank pin I at its nearest position to the axis of
rotation. When a resistance has to be overcome, the shaft N rotates

relatively to P, compressing the springs, till their resistance balances
the pressure due to the resistance to the rotation of P. The engine
then commences to work, the crank pin being in the position in
which the turning effort just overcomes the resistance. If the
resistance diminishes, the springs force out the chains and shorten the
stroke of the plungers, and vice versa. The following experiments,
on an engine of this kind working a hoist, show how the automatic
arrangement adjusted the water used to the work done. The lift
was 22 ft. and the water pressure in the cylinders 80 ℔ per sq. in.


	Weight lifted, in ℔ 	Chain only 	427 	633 	745 	857 	969 	1081 	1193

	Water used, in gallons 	71⁄2 	10 	14 	16 	17 	20 	21 	22





§ 179. Accumulator Machinery.—It has already been pointed
out that it is in some cases convenient to use a steam engine
to create an artificial head of water, which is afterwards employed
in driving water-pressure machinery. Where power is required
intermittently, for short periods, at a number of different points,
as, for instance, in moving the cranes, lock gates, &c., of a
dockyard, a separate steam engine and boiler at each point is
very inconvenient; nor can engines worked from a common
boiler be used, because of the great loss of heat and the difficulties
which arise out of condensation in the pipes. If a tank, into
which water is continuously pumped, can be placed at a great
elevation, the water can then be used in hydraulic machinery
in a very convenient way. Each hydraulic machine is put
in communication with the tank by a pipe, and on opening a
valve it commences work, using a quantity of water directly
proportional to the work done. No attendance is required when
the machine is not working.


	

	Fig. 176.


A site for such an elevated tank is, however, seldom available,
and in place of it a beautiful arrangement termed an accumulator,
invented by Lord Armstrong, is used. This consists of a tall
vertical cylinder; into this works a solid ram through cup
leathers or hemp packing, and the ram is loaded by fixed weights,
so that the pressure in the cylinder is 700 ℔ or 800 ℔ per sq. in.
In some cases the ram is fixed and the cylinder moves on it.
The pumping engines
which supply
the energy that
is stored in the accumulator
should
be a pair coupled
at right angles, so
as to start in any
position. The engines
pump into
the accumulator
cylinder till the
ram is at the top
of its stroke, when
by a catch arrangement
acting
on the engine
throttle valve
the engines are
stopped. If the
accumulator ram
descends, in consequence
of water
being taken to
work machinery,
the engines immediately
recommence
working.
Pipes lead from
the accumulator
to each of the
machines requiring
to be driven,
and do not require to be of large size, as the pressure is so
great.


Fig. 176 shows a diagrammatic way the scheme of a system of
accumulator machinery. A is the accumulator, with its ram carrying
a cylindrical wrought-iron tank W, in which weights are placed
to load the accumulator. At R is one of the pressure engines or
jiggers, worked from the accumulator, discharging the water after use
into the tank T. In this case the pressure engine is shown working a
set of blocks, the fixed block being on the ram cylinder, the running
block on the ram. The chain running over these blocks works a
lift cage C, the speed of which is as many times greater than that of
the ram as there are plies of chain on
the block tackle. B is the balance
weight of the cage.


	

	Fig. 177.


In the use of accumulators on shipboard
for working gun gear or steering
gear, the accumulator ram is loaded by
springs, or by steam pressure acting on a
piston much larger than the ram.

R. H. Tweddell has used accumulators
with a pressure of 2000 ℔ per
sq. in. to work hydraulic riveting machinery.

The amount of energy stored in the
accumulator, having a ram d in. in
diameter, a stroke of S ft., and delivering
at p ℔ pressure per sq. in., is

π/4 p d2S foot-pounds.

Thus, if the ram is 9 in., the stroke 20 ft.,
and the pressure 800 ℔ per sq. in., the
work stored in the accumulator when the
ram is at the top of the stroke is 1,017,600
foot-pounds, that is, enough to drive a
machine requiring one horse power for
about half an hour. As, however, the
pumping engine replaces water as soon
as it is drawn off, the working capacity
of the accumulator is very much greater
than this. Tweddell found that an accumulator
charged at 1250 ℔ discharged
at 1225 ℔ per sq. in. Hence the friction
was equivalent to 121⁄2 ℔ per sq. in. and
the efficiency 98%.

When a very great pressure is required
a differential accumulator (fig. 177) is
convenient. The ram is fixed and passes through both ends of
the cylinder, but is of different diameters at the two ends,
A and B. Hence if d1, d2 are the diameters of the ram in inches and
p the required pressure in ℔ per sq. in., the load required is
1⁄4pπ(d12 − d22). An accumulator of this kind used with riveting
machines has d1 = 51⁄2 in., d2 = 43⁄4 in. The pressure is 2000 ℔ per sq. in.
and the load 5.4 tons.


	

	Fig. 178.


Sometimes an accumulator is loaded by water or steam pressure
instead of by a dead weight. Fig. 178 shows the arrangement. A
piston A is connected to a plunger B of much
smaller area. Water pressure, say from town
mains, is admitted below A, and the high
pressure water is pumped into and discharged
from the cylinder C in which B works. If r is
the ratio of the areas of A and B, then, neglecting
friction, the pressure in the upper cylinder
is r times that under the piston A. With a
variable rate of supply and demand from the
upper cylinder, the piston A rises and falls,
maintaining always a constant pressure in the
upper cylinder.



Water Wheels.

§ 180. Overshot and High Breast Wheels.—When
a water fall ranges between 10
and 70 ft. and the water supply is from 3
to 25 cub. ft. per second, it is possible to
construct a bucket wheel on which the water
acts chiefly by its weight. If the variation
of the head-water level does not exceed 2 ft.,
an overshot wheel may be used (fig. 179).
The water is then projected over the summit
of the wheel, and falls in a parabolic path
into the buckets. With greater variation of head-water level, a
pitch-back or high breast wheel is better. The water falls over
the top of a sliding sluice into the wheel, on the same side as the
head race channel. By adjusting the height of the sluice, the
requisite supply is given to the wheel in all positions of the
head-water level.

The wheel consists of a cast-iron or wrought-iron axle C
supporting the weight of the wheel. To this are attached two

sets of arms A of wood or iron, which support circular segmental
plates, B, termed shrouds. A cylindrical sole plate dd extends
between the shrouds on the inner side. The buckets are formed
by wood planks or curved wrought-iron plates extending from
shroud to shroud, the back of the buckets being formed by the
sole plate.


	

	Fig. 179.



The efficiency may be taken at 0.75. Hence, if h.p. is the effective
horse power, H the available fall, and Q the available water supply
per second,

h.p. = 0.75 (GQH/550) = 0.085 QH.

If the peripheral velocity of the water wheel is too great, water is
thrown out of the buckets before reaching the bottom of the fall.
In practice, the circumferential velocity of water wheels of the kind
now described is from 41⁄2 to 10 ft. per second, about 6 ft. being the
usual velocity of good iron wheels not of very small size. In order
that the water may enter the buckets easily, it must have a greater
velocity than the wheel. Usually the velocity of the water at the
point where it enters the wheel is from 9 to 12 ft. per second, and
to produce this it must enter the wheel at a point 16 to 27 in. below
the head-water level. Hence the diameter of an overshot wheel
may be

D = H − 11⁄3 to H − 21⁄4 ft.

Overshot and high breast wheels work badly in backwater, and hence
if the tail-water level varies, it is better to reduce the diameter of
the wheel so that its greatest immersion in flood is not more than
1 ft. The depth d of the shrouds is about 10 to 16 in. The number
of buckets may be about

N = πD / d.

Let v be the peripheral velocity of the wheel. Then the capacity
of that portion of the wheel which passes the sluice in one second is

Q1 = vb (Dd − d2) / D

 = v b d nearly,

b being the breadth of the wheel between the shrouds. If, however,
this quantity of water were allowed to pass on to the wheel the
buckets would begin to spill their contents almost at the top of the
fall. To diminish the loss from spilling, it is not only necessary to
give the buckets a suitable form, but to restrict the water supply to
one-fourth or one-third of the gross bucket capacity. Let m be the
value of this ratio; then, Q being the supply of water per second,

Q = mQ1 = mb dv.

This gives the breadth of the wheel if the water supply is known.
The form of the buckets should be determined thus. The outer
element of the bucket should be in the direction of motion of the
water entering relatively to the wheel, so that the water may enter
without splashing or shock. The buckets should retain the water as
long as possible, and the width of opening of the buckets should be
2 or 3 in. greater than the thickness of the sheet of water entering.
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For a wooden bucket (fig. 180, A), take ab = distance between two
buckets on periphery of wheel. Make ed = 1⁄2 eb and bc = 6⁄5 to 5⁄4 ab.
Join cd. For an iron bucket (fig. 180, B), take ed = 1⁄3eb; bc = 6⁄5ab.
Draw cO making an
angle of 10° to 15° with
the radius at c. On Oc
take a centre giving a
circular arc passing
near d, and round the
curve into the radial
part of the bucket de.



There are two ways
in which the power of
a water wheel is given
off to the machinery
driven. In wooden
wheels and wheels
with rigid arms, a spur
or bevil wheel keyed
on the axle of the
turbine will transmit
the power to the shafting. It is obvious that the whole
turning moment due to the weight of the water is then transmitted
through the arms and axle of the water wheel. When
the water wheel is an iron one, it usually has light iron
suspension arms incapable of resisting the bending action due
to the transmission of the turning effort to the axle. In that
case spur segments are bolted to one of the shrouds, and the
pinion to which the power is transmitted is placed so that the
teeth in gear are, as nearly as may be, on the line of action of the
resultant of the weight of the water in the loaded arc of the wheel.

The largest high breast wheels ever constructed were probably
the four wheels, each 50 ft. in diameter, and of 125 h.p., erected
by Sir W. Fairbairn in 1825 at Catrine in Ayrshire. These wheels
are still working.


	

	Fig. 181.


§ 181. Poncelet Water Wheel.—When the fall does not exceed
6 ft., the best water motor to adopt in many cases is the Poncelet
undershot water wheel. In this the water acts very nearly in the
same way as in a turbine, and the Poncelet wheel, although
slightly less efficient than the best turbines, in normal conditions
of working, is superior to most of them when working with
a reduced supply of water. A general notion of the action
of the water on a Poncelet wheel has already been given in
§ 159. Fig. 181 shows its construction. The water penned back
between the side walls of the wheel pit is allowed to flow to the
wheel under a movable sluice, at a velocity nearly equal to the
velocity due to the whole fall. The water is guided down a slope
of 1 in 10, or a curved race, and enters the wheel without shock.
Gliding up the curved floats it comes to rest, falls back, and
acquires at the point of discharge a backward velocity relative
to the wheel nearly equal to the forward velocity of the wheel.
Consequently it leaves the wheel deprived of nearly the whole
of its original kinetic energy.


Taking the efficiency at 0.60, and putting H for the available fall,
h.p. for the horse-power, and Q for the water supply per second,

h.p. = 0.068 QH.

The diameter D of the wheel may be taken arbitrarily. It should not
be less than twice the fall and is more often four times the fall. For
ordinary cases the smallest convenient diameter is 14 ft. with a
straight, or 10 ft. with a curved, approach channel. The radial

depth of bucket should be at least half the fall, and radius of curvature
of buckets about half the radius of the wheel. The shrouds are
usually of cast iron with flanges to receive the buckets. The buckets
may be of iron 1⁄8 in. thick bolted to the flanges with 5⁄16 in. bolts.

Let H′ be the fall measured from the free surface of the head-water
to the point F where the mean layer enters the wheel; then the
velocity at which the water enters is v = √ (2gH′), and the best
circumferential velocity of the wheel is V = 0.55f to 0.6v. The
number of rotations of the wheel per second is N = V/πD. The
thickness of the sheet of water entering the wheel is very important.
The best thickness according to experiment is 8 to 10
in. The maximum thickness should not exceed 12 to 15 in., when
there is a surplus water supply. Let e be the thickness of the sheet
of water entering the wheel, and b its width; then

bev = Q; or b = Q/ev.

Grashof takes e = 1⁄6H, and then

b = 6Q/H √ (2gH).

Allowing for the contraction of the stream, the area of opening
through the sluice may be 1.25 be to 1.3 be. The inside width of
the wheel is made about 4 in. greater than b.

Several constructions have been given for the floats of Poncelet
wheels. One of the simplest is that shown in figs. 181, 182.

Let OA (fig. 181) be the vertical radius of the wheel. Set off OB,
OD making angles of 15° with OA. Then BD may be the length of
the close breasting fitted to the wheel. Draw the bottom of the
head face BC at a slope of 1 in 10. Parallel to this, at distances 1⁄2e
and e, draw EF and GH. Then EF is the mean layer and GH the
surface layer entering the wheel. Join OF, and make OFK = 23°.
Take FK = 0.5 to 0.7 H. Then K is the centre from which the
bucket curve is struck and KF is the radius. The depth of the
shrouds must be sufficient to prevent the water from rising over the
top of the float. It is 1⁄2H to 2⁄3H. The number of buckets is not
very important. They are usually 1 ft. apart on the circumference
of the wheel.

The efficiency of a Poncelet wheel has been found in experiments
to reach 0.68. It is better to take it at 0.6 in estimating the power
of the wheel, so as to allow some margin.


	

	Fig. 182.


In fig. 182 vi is the initial and vo the final velocity of the water,
vr parallel to the vane the relative velocity of the water and wheel,
and V the velocity of the wheel.



Turbines.

§ 182. The name turbine was originally given in France to
any water motor which revolved in a horizontal plane, the axis
being vertical. The rapid development of this class of motors
dates from 1827, when a prize was offered by the Société
d’Encouragement for a motor of this kind, which should be
an improvement on certain wheels then in use. The prize
was ultimately awarded to Benoît Fourneyron (1802-1867),
whose turbine, but little modified, is still constructed.

Classification of Turbines.—In some turbines the whole
available energy of the water is converted into kinetic energy
before the water acts on the moving part of the turbine. Such
turbines are termed Impulse or Action Turbines, and they are
distinguished by this that the wheel passages are never entirely
filled by the water. To ensure this condition they must be placed
a little above the tail water and discharge into free air. Turbines
in which part only of the available energy is converted into
kinetic energy before the water enters the wheel are termed
Pressure or Reaction Turbines. In these there is a pressure
which in some cases amounts to half the head in the clearance
space between the guide vanes and wheel vanes. The velocity
with which the water enters the wheel is due to the difference
between the pressure due to the head and the pressure in the
clearance space. In pressure turbines the wheel passages must
be continuously filled with water for good efficiency, and the
wheel may be and generally is placed below the tail water level.

Some turbines are designed to act normally as impulse turbines
discharging above the tail water level. But the passages are so
designed that they are just filled by the water. If the tail water
rises and drowns the turbine they become pressure turbines with
a small clearance pressure, but the efficiency is not much affected.
Such turbines are termed Limit turbines.

Next there is a difference of constructive arrangement of
turbines, which does not very essentially alter the mode of action
of the water. In axial flow or so-called parallel flow turbines,
the water enters and leaves the turbine in a direction parallel
to the axis of rotation, and the paths of the molecules lie on
cylindrical surfaces concentric with that axis. In radial outward
and inward flow turbines, the water enters and leaves the turbine
in directions normal to the axis of rotation, and the paths of the
molecules lie exactly or nearly in planes normal to the axis of
rotation. In outward flow turbines the general direction of flow
is away from the axis, and in inward flow turbines towards the
axis. There are also mixed flow turbines in which the water
enters normally and is discharged parallel to the axis of rotation.

Another difference of construction is this, that the water may
be admitted equally to every part of the circumference of the
turbine wheel or to a portion of the circumference only. In the
former case, the condition of the wheel passages is always the
same; they receive water equally in all positions during rotation.
In the latter case, they receive water during a part of the rotation
only. The former may be termed turbines with complete
admission, the latter turbines with partial admission. A reaction
turbine should always have complete admission. An impulse
turbine may have complete or partial admission.

When two turbine wheels similarly constructed are placed on
the same axis, in order to balance the pressures and diminish
journal friction, the arrangement may be termed a twin turbine.

If the water, having acted on one turbine wheel, is then passed
through a second on the same axis, the arrangement may be
termed a compound turbine. The object of such an arrangement
would be to diminish the speed of rotation.

Many forms of reaction turbine may be placed at any height not
exceeding 30 ft. above the tail water. They then discharge into
an air-tight suction pipe. The weight of the column of water
in this pipe balances part of the atmospheric pressure, and the
difference of pressure, producing the flow through the turbine, is
the same as if the turbine were placed at the bottom of the fall.



	I. Impulse Turbines. 	II. Reaction Turbines.

	(Wheel passages not filled, and discharging above 	(Wheel passages filled, discharging above or below

	  the tail water.) 	  the tail water or into a suction-pipe.

	(a) Complete admission. (Rare.) 	Always with complete admission.

	(b) Partial admission. (Usual.) 	 

	Axial flow, outward flow, inward flow, or mixed flow.

	Simple turbines; twin turbines; compound turbines.
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§ 183. The Simple Reaction Wheel.—It has been shown, in § 162,
that, when water issues from a vessel, there is a reaction on the
vessel tending to cause motion in a
direction opposite to that of the jet.
This principle was applied in a rotating
water motor at a very early period, and
the Scotch turbine, at one time much
used, differs in no essential respect from
the older form of reaction wheel.

The old reaction wheel consisted of a
vertical pipe balanced on a vertical
axis, and supplied with water (fig. 183).
From the bottom of the vertical pipe
two or more hollow horizontal arms
extended, at the ends of which were
orifices from which the water was discharged.
The reaction of the jets caused
the rotation of the machine.

Let H be the available fall measured
from the level of the water in the vertical
pipe to the centres cf the orifices,
r the radius from the axis of rotation to the centres of the orifices,
v the velocity of discharge through the jets, α the angular velocity of

the machine. When the machine is at rest the water issues from
the orifices with the velocity √ (2gH) (friction being neglected). But
when the machine rotates the water in the arms rotates also, and is
in the condition of a forced vortex, all the particles having the same
angular velocity. Consequently the pressure in the arms at the
orifices is H + α2r2/2g ft. of water, and the velocity of discharge
through the orifices is v = √ (2gH + α2r2). If the total area of the
orifices is ω, the quantity discharged from the wheel per second is

Q = ωv = ω √ (2gH + α2r2).

While the water passes through the orifices with the velocity v, the
orifices are moving in the opposite direction with the velocity αr.
The absolute velocity of the water is therefore

v − αr = √ (2gH + α2r2) − αr.

The momentum generated per second is (GQ/g)(v − αr), which is
numerically equal to the force driving the motor at the radius r.
The work done by the water in rotating the wheel is therefore

(GQ/g) (v − αr) αr foot-pounds per sec.

The work expended by the water fall is GQH foot-pounds per second.
Consequently the efficiency of the motor is


	η = 	(v − αr) αr
	= 	{√ (2gH + α2r2) − αr} αr
	.

	gH 	gH


Let


	√ (2gH + α2r2) = αr + 	gH
	− 	g2H2
	...

	αr 	2α3r3


then

η = 1 − gH / 2αr + ...

which increases towards the limit 1 as αr increases towards infinity.
Neglecting friction, therefore, the maximum efficiency is reached
when the wheel has an infinitely great velocity of rotation. But
this condition is impracticable to realize, and even, at practicable but
high velocities of rotation, the friction would considerably reduce the
efficiency. Experiment seems to show that the best efficiency is reached
when αr = √ (2gH). Then the efficiency apart from friction is

η = {√ (2α2r2) − αr} αr / gH

 = 0.414 α2r2 / gH = 0.828,

about 17% of the energy of the fall being carried away by the water
discharged. The actual efficiency realized appears to be about 60%,
so that about 21% of the energy of the fall is lost in friction, in
addition to the energy carried away by the water.

§ 184. General Statement of Hydrodynamical Principles necessary for
the Theory of Turbines.

(a) When water flows through any pipe-shaped passage, such as
the passage between the vanes of a turbine wheel, the relation between
the changes of pressure and velocity is given by Bernoulli’s
theorem (§ 29). Suppose that, at a section A of such a passage, h1
is the pressure measured in feet of water, v1 the velocity, and z1 the
elevation above any horizontal datum plane, and that at a section
B the same quantities are denoted by h2, v2, z2. Then

h1 − h2 = (v22 − v12) / 2g + z2 − z1.

(1)

If the flow is horizontal, z2 = z1; and

h1 − h2 = (v22 − v12) / 2g.                   (la)

(b) When there is an abrupt change of section of the passage, or
an abrupt change of section of the stream due to a contraction, then,
in applying Bernoulli’s equation allowance must be made for the
loss of head in shock (§ 36). Let v1, v2 be the velocities before and
after the abrupt change, then a stream of velocity v1 impinges on a
stream at a velocity v2, and the relative velocity is v1 − v2. The
head lost is (v1 − v2)2/2g. Then equation (1a) becomes

h2 − h1 = (v12 − v22) / 2g − (v1 − v2)2 / 2g = v2 (v1 − v2) / g

(2)
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To diminish as much as possible the loss of energy from irregular
eddying motions, the change of section in the turbine passages must
be very gradual, and the curvature
without discontinuity.

(c) Equality of Angular Impulse
and Change of Angular Momentum.—Suppose
that a couple, the
moment of which is M, acts on a
body of weight W for t seconds,
during which it moves from A1
to A2 (fig. 184). Let v1 be the
velocity of the body at A1, v2 its
velocity at A2, and let p1, p2 be
the perpendiculars from C on v1
and v2. Then Mt is termed the
angular impulse of the couple, and
the quantity

(W/g) (v2p2 − v1p1)

is the change of angular momentum
relatively to C. Then, from
the equality of angular impulse
and change of angular momentum

Mt = (W/g) (v2p2 − v1p1),

or, if the change of momentum is estimated for one second,

M = (W/g) (v2p2 − v1p1).

Let r1, r2 be the radii drawn from C to A1, A2, and let w1, w2 be the
components of v1, v2, perpendicular to these radii, making angles
β and α with v1, v2. Then

v1 = w1 sec β; v2 = w2 sec α

p1 = r1 cos β; p2 = r2 cos α,

∴ M = (W/g) (w2r2 − w1r1),

(3)

where the moment of the couple is expressed in terms of the radii
drawn to the positions of the body at the beginning and end of a
second, and the tangential components of its velocity at those
points.

Now the water flowing through a turbine enters at the admission
surface and leaves at the discharge surface of the wheel, with its
angular momentum relatively to the axis of the wheel changed. It
therefore exerts a couple −M tending to rotate the wheel, equal and
opposite to the couple M which the wheel exerts on the water. Let
Q cub. ft. enter and leave the wheel per second, and let w1, w2 be
the tangential components of the velocity of the water at the receiving
and discharging surfaces of the wheel, r1, r2 the radii of those
surfaces. By the principle above,

−M = (GQ/g) (w2r2 − w1r1).

(4)

If α is the angular velocity of the wheel, the work done by the
water on the wheel is

T = Ma = (GQ/g) (w1r1 − w2r2) α foot-pounds per second.

(5)

§ 185. Total and Available Fall.—Let Ht be the total difference of
level from the head-water to the tail-water surface. Of this total
head a portion is expended in overcoming the resistances of the head
race, tail race, supply pipe, or other channel conveying the water.
Let ɧp be that loss of head, which varies with the local conditions in
which the turbine is placed. Then

H = Ht − ɧp

is the available head for working the turbine, and on this the calculations
for the turbine should be based. In some cases it is necessary
to place the turbine above the tail-water level, and there is then a
fall ɧ from the centre of the outlet surface of the turbine to the tail-water
level which is wasted, but which is properly one of the losses
belonging to the turbine itself. In that case the velocities of the
water in the turbine should be calculated for a head H − ɧ, but the
efficiency of the turbine for the head H.

§ 186. Gross Efficiency and Hydraulic Efficiency of a Turbine.—Let
Td be the useful work done by the turbine, in foot-pounds per
second, Tt the work expended in friction of the turbine shaft,
gearing, &c., a quantity which varies with the local conditions in
which the turbine is placed. Then the effective work done by the
water in the turbine is

T = Td + Tt.

The gross efficiency of the whole arrangement of turbine, races,
and transmissive machinery is

ηt = Td / CQHt.

(6)

And the hydraulic efficiency of the turbine alone is

η = T / GQH.

(7)

It is this last efficiency only with which the theory of turbines is
concerned.

From equations (5) and (7) we get

ηGQH = (GQ/g) (w1r1 − w2r2) α;

η = (w1r1 − w2r2) α/gH.

(8)

This is the fundamental equation in the theory of turbines. In
general,7 w1 and w2, the tangential components of the water’s
motion on entering and leaving the wheel, are completely independent.
That the efficiency may be as great as possible, it is
obviously necessary that w2 = 0. In that case

η = w1r1α / gH.

(9)

αr1 is the circumferential velocity of the wheel at the inlet surface.
Calling this V1, the equation becomes

η = w1V1 / gH.

(9a)

This remarkably simple equation is the fundamental equation in
the theory of turbines. It was first given by Reiche (Turbinenbaues,
1877).
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§ 187. General Description of a Reaction Turbine.—Professor
James Thomson’s inward flow or vortex turbine has been
selected as the type of reaction turbines. It is one of the best
in normal conditions of working, and the mode of regulation
introduced is decidedly superior to that in most reaction turbines.
Figs. 185 and 186 are external views of the turbine case; figs.
187 and 188 are the corresponding sections; fig. 189 is the
turbine wheel. The example chosen for illustration has suction
pipes, which permit the turbine to be placed above the tail-water
level. The water enters the turbine by cast-iron supply pipes at
A, and is discharged through two suction pipes S, S. The water

on entering the case distributes itself through a rectangular
supply chamber SC, from which it finds its way equally to the
four guide-blade passages G, G, G, G. In these passages it
acquires a velocity about equal to that due to half the fall, and is
directed into the wheel at an angle of about 10° or 12° with the
tangent to its circumference. The wheel W receives the water
in equal proportions from each guide-blade passage. It consists
of a centre plate p (fig. 189) keyed on the shaft aa, which passes
through stuffing boxes on the suction pipes. On each side of
the centre plate are the curved wheel vanes, on which the pressure
of the water acts, and the vanes are bounded on each side by
dished or conical cover plates c, c. Joint-rings j, j on the cover

plates make a sufficiently water-tight joint with the casing, to
prevent leakage from the guide-blade chamber into the suction
pipes. The pressure near the joint rings is not very great,
probably not one-fourth the total head. The wheel vanes
receive the water
without shock, and
deliver it into central
spaces, from which it
flows on either side
to the suction pipes.
The mode of regulating
the power of
the turbine is very
simple. The guide-blades
are pivoted to
the case at their inner
ends, and they are
connected by a link-work,
so that they all
open and close simultaneously
and
equally. In this way
the area of opening
through the guide-blades
is altered without
materially altering
the angle or the
other conditions of
the delivery into the
wheel. The guide-blade
gear may be
variously arranged.
In this example four
spindles, passing through the case, are linked to the guide-blades
inside the case, and connected together by the links
l, l, l on the outside of the case. A worm wheel on one of the
spindles is rotated by a worm d, the motion being thus slow
enough to adjust the guide-blades very exactly. These turbines
are made by Messrs Gilkes & Co. of Kendal.
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Fig. 190 shows another arrangement of a similar turbine, with some
adjuncts not shown in the other drawings. In this case the turbine
rotates horizontally, and the turbine case is placed entirely below
the tail water. The water is supplied to the turbine by a vertical
pipe, over which is a wooden pentrough, containing a strainer,
which prevents sticks and other solid bodies getting into the turbine.
The turbine rests on three foundation stones, and, the pivot for the
vertical shaft being under water, there is a screw and lever arrangement
for adjusting it as it wears. The vertical shaft gives motion
to the machinery driven by a pair of bevel wheels. On the right
are the worm and wheel for working the guide-blade gear.


	

	Fig. 191.


§ 188. Hydraulic Power at Niagara.—The largest development of
hydraulic power is that at Niagara. The Niagara Falls Power
Company have constructed two power houses on the United States
side, the first with 10 turbines of 5000 h.p. each, and the second
with 10 turbines of 5500 h.p. The effective fall is 136 to 140 ft.
In the first power house the turbines are twin outward flow reaction
turbines with vertical shafts running at 250 revs. per minute and
driving the dynamos direct. In the second power house the turbines
are inward flow turbines with draft tubes or suction pipes. Fig. 191
shows a section of one of these turbines. There is a balancing
piston keyed on the shaft, to the under side of which the pressure
due to the fall is admitted, so that the weight of turbine, vertical
shaft and part of the dynamo is water borne. About 70,000 h.p.
is daily distributed electrically from these two power houses. The
Canadian Niagara Power Company are erecting a power house to
contain eleven units of 10,250 h.p. each, the turbines being twin
inward flow reaction turbines. The Electrical Development Company
of Ontario are erecting a power house to contain 11 units of
12,500 h.p. each. The Ontario Power Company are carrying out
another scheme for developing 200,000 h.p. by twin inward flow
turbines of 12,000 h.p. each. Lastly the Niagara Falls Power and
Manufacturing Company on the United States side have a station
giving 35,000 h.p. and are constructing another to furnish 100,000
h.p. The mean flow of the Niagara river is about 222,000 cub. ft. per
second with a fall of 160 ft. The works in progress if completed will
utilize 650,000 h.p. and require 48,000 cub. ft. per second or 211⁄2% of
the mean flow of the river (Unwin, “The Niagara Falls Power
Stations,” Proc. Inst. Mech. Eng., 1906).
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§ 189. Different Forms of Turbine Wheel.—The wheel of a turbine
or part of the machine on which the water acts is an annular space,
furnished with curved vanes dividing it into passages exactly or
roughly rectangular in cross section. For radial flow turbines the
wheel may have the form A or B, fig. 192, A being most usual with

inward, and B with outward flow turbines. In A the wheel vanes
are fixed on each side of a centre plate keyed on the turbine shaft.
The vanes are limited by slightly-coned annular cover plates. In B
the vanes are fixed on one side of a disk, keyed on the shaft, and
limited by a cover plate parallel to the disk. Parallel flow or axial
flow turbines have the wheel as in C. The vanes are limited by two
concentric cylinders.

Theory of Reaction Turbines.


	

	Fig. 193.


§ 190. Velocity of Whirl and Velocity of Flow.—Let acb (fig. 193)
be the path of the particles of water in a turbine wheel. That
path will be in a
plane normal to the
axis of rotation in
radial flow turbines,
and on a cylindrical
surface in axial flow
turbines. At any
point c of the path
the water will have
some velocity v, in
the direction of a
tangent to the path.
That velocity may be
resolved into two
components, a whirling
velocity w in the
direction of the
wheel’s rotation at the point c, and a component u at right angles
to this, radial in radial flow, and parallel to the axis in axial flow
turbines. This second component is termed the velocity of flow.
Let vo, wo, uo be the velocity of the water, the whirling velocity and
velocity of flow at the outlet surface of the wheel, and vi, wi, ui
the same quantities at the inlet surface of the wheel. Let α and β
be the angles which the water’s direction of motion makes with the
direction of motion of the wheel at those surfaces. Then

wo = vo cos β;  uo = vo sin β

 wi = vi cos α; ui = vi sin α.

(10)

The velocities of flow are easily ascertained independently from
the dimensions of the wheel. The velocities of flow at the inlet and
outlet surfaces of the wheel are normal to those surfaces. Let
Ωo, Ωi be the areas of the outlet and inlet surfaces of the wheel, and
Q the volume of water passing through the wheel per second; then

v0 = Q/Ωo; vi = Q/Ωi.

(11)

Using the notation in fig. 191, we have, for an inward flow turbine
(neglecting the space occupied by the vanes),

Ωo = 2πr0d0; Ωi = 2πridi.

(12a)

Similarly, for an outward flow turbine,

Ωo = 2πrod; Ωi = 2πrid;

(12b)

and, for an axial flow turbine,

Ωo = Ωi = π (r22 − r12).

(12c)
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Relative and Common Velocity of the Water and Wheel.—There
is another way of resolving the velocity of the water. Let V be the
velocity of the wheel at the point c, fig. 194. Then the velocity of the
water may be resolved
into a component V,
which the water has
in common with the
wheel, and a component
vr, which is the velocity
of the water relatively
to the wheel.

Velocity of Flow.—It
is obvious that the
frictional losses of head
in the wheel passages
will increase as the
velocity of flow is
greater, that is, the
smaller the wheel is
made. But if the wheel
works under water, the
skin friction of the wheel cover increases as the diameter of the
wheel is made greater, and in any case the weight of the wheel
and consequently the journal friction increase as the wheel is made
larger. It is therefore desirable to choose, for the velocity of flow,
as large a value as is consistent with the condition that the frictional
losses in the wheel passages are a small fraction of the total head.

The values most commonly assumed in practice are these:—


	In axial flow turbines, 	uo = ui = 0.15 to 0.2 √(2gH);

	In outward flow turbines, 	ui = 0.25 √2g (H − ɧ),

	  	uo = 0.21 to 0.17 √2g (H − ɧ);

	In inward flow turbines, 	uo = ui = 0.125 √(2gH).



§ 191. Speed of the Wheel.—The best speed of the wheel depends
partly on the frictional losses, which the ordinary theory of turbines
disregards. It is best, therefore, to assume for Vo and Vi values
which experiment has shown to be most advantageous.

In axial flow turbines, the circumferential velocities at the mean
radius of the wheel may be taken

Vo = Vi = 0.6 √2gH to 0.66 √2gH.

In a radial outward flow turbine,

Vi = 0.56 √2g(H − ɧ)

Vo = Viro / ri,

where ro, ri are the radii of the outlet and inlet surfaces.

In a radial inward flow turbine,

Vi = 0.66 √2gH,

Vo = Viro / ri.

If the wheel were stationary and the water flowed through it, the
water would follow paths parallel to the wheel vane curves, at least
when the vanes were so close that irregular motion was prevented.
Similarly, when the wheel is in motion, the water follows paths relatively
to the wheel, which are curves parallel to the wheel vanes.
Hence the relative component, vr, of the water’s motion at c is tangential
to a wheel vane curve drawn through the point c. Let vo,
Vo, vro be the velocity of the water and its common and relative
components at the outlet surface of the wheel, and vi, Vi, vri be the
same quantities at the inlet surface; and let θ and φ be the angles
the wheel vanes make with the inlet and outlet surfaces; then

vo2 = √ (vro2 + Vo2 − 2Vovro cos φ)

 vi = √ (vri2 + Vo2 − 2Vivri cos θ),

(13)

equations which may be used to determine φ and θ.


	

	Fig. 195.


§ 192. Condition determining the Angle of the Vanes at the Outlet
Surface of the Wheel.—It has been shown that, when the water leaves
the wheel, it should
have no tangential
velocity, if the efficiency
is to be as
great as possible;
that is, wo = 0. Hence,
from (10), cos β = 0,
β = 90°, Uo = Vo, and
the direction of the
water’s motion is
normal to the outlet
surface of the wheel,
radial in radial flow,
and axial in axial flow
turbines.

Drawing vo or uo
radial or axial as the
case may be, and Vo
tangential to the direction of motion, vro can be found by the
parallelogram of velocities. From fig. 195,

tan φ = vo / Vo = uo / Vo;

(14)

but φ is the angle which the wheel vane makes with the outlet
surface of the wheel, which is thus determined when the velocity
of flow uo and velocity of the wheel Vo are known. When φ is thus
determined,

vro = Uo cosec φ = Vo √ (1 + uo2 / Vo2).

(14a)

Correction of the Angle φ to allow for Thickness of Vanes.—In
determining φ, it is most convenient to calculate its value approximately
at first, from a value of uo obtained by neglecting the thickness
of the vanes. As, however, this angle is the most important
angle in the turbine, the value should be afterwards corrected to
allow for the vane thickness.

Let

φ′ = tan−1 (uo / Vo) = tan−1 (Q / ΩoVo)

be the first or approximate value of φ, and let t be the thickness,
and n the number of wheel vanes which reach the outlet surface of
the wheel. As the vanes cut the outlet surface approximately at
the angle φ′, their width measured on that surface is t cosec φ′.
Hence the space occupied by the vanes on the outlet surface is

	 
For A, fig. 192, ntdo cosec φ

B, fig. 192, ntd cosec φ

C, fig. 192, nt (r2 − r1) cosec φ.


 


(15)

Call this area occupied by the vanes ω. Then the true value of the
clear discharging outlet of the wheel is Ωo − ω, and the true value
of uo is Q/(Ωo − ω). The corrected value of the angle of the vanes will
be

φ = tan [Q / Vo (Ωo − ω) ].

(16)

§ 193. Head producing Velocity with which the Water enters the
Wheel.—Consider the variation of pressure in a wheel passage,
which satisfies the condition that the sections change so gradually
that there is no loss of head in shock. When the flow is in a horizontal
plane, there is no work done by gravity on the water passing
through the wheel. In the case of an axial flow turbine, in which
the flow is vertical, the fall d between the inlet and outlet surfaces
should be taken into account.



	 
Let Vi, Vo be the velocities of the wheel at the inlet and
outlet surfaces,

vi, vo the velocities of the water,

ui, uo the velocities of flow,

vri, vro the relative velocities,

hi, ho the pressures, measured in feet of water,

ri, ro the radii of the wheel,

α the angular velocity of the wheel.


 


At any point in the path of a portion of water, at radius r, the
velocity v of the water may be resolved into a component V = αr
equal to the velocity at that point of the wheel, and a relative component
vr. Hence the motion of the water may be considered to
consist of two parts:—(a) a motion identical with that in a forced
vortex of constant angular velocity α; (b) a flow along curves
parallel to the wheel vane curves. Taking the latter first, and using
Bernoulli’s theorem, the change of pressure due to flow through the
wheel passages is given by the equation

h′i + vri2 / 2g = h′o + vro2 / 2g;

 h′i − h′o = (vro2 − vri2) / 2g.

The variation of pressure due to rotation in a forced vortex is

h″i − h″o = (Vi2 − Vo2) / 2g.

Consequently the whole difference of pressure at the inlet and outlet
surfaces of the wheel is

hi − ho = h′i + h″i − h′o − h″o

 = (Vi2 − Vo2) / 2g + (vro2 − vri2) / 2g.

(17)

Case 1. Axial Flow Turbines.—Vi = Vo; and the first term on the
right, in equation 17, disappears. Adding, however, the work of
gravity due to a fall of d ft. in passing through the wheel,

hi − ho = (vro2 − vri2) / 2g − d.

17a

Case 2. Outward Flow Turbines.—The inlet radius is less than
the outlet radius, and (Vi2 − Vo2)/2g is negative. The centrifugal head
diminishes the pressure at the inlet surface, and increases the velocity
with which the water enters the wheel. This somewhat increases
the frictional loss of head. Further, if the wheel varies in velocity
from variations in the useful work done, the quantity (Vi2 − Vo2)/2g
increases when the turbine speed increases, and vice versa. Consequently
the flow into the turbine increases when the speed increases,
and diminishes when the speed diminishes, and this again augments
the variation of speed. The action of the centrifugal head in an outward
flow turbine is therefore prejudicial to steadiness of motion.
For this reason ro : ri is made small, generally about 5 : 4. Even
then a governor is sometimes required to regulate the speed of the
turbine.

Case 3. Inward Flow Turbines.—The inlet radius is greater than
the outlet radius, and the centrifugal head diminishes the velocity
of flow into the turbine. This tends to diminish the frictional
losses, but it has a more important influence in securing steadiness
of motion. Any increase of speed diminishes the flow into the
turbine, and vice versa. Hence the variation of speed is less than
the variation of resistance overcome. In the so-called centre vent
wheels in America, the ratio ri : ro is about 5 : 4, and then the influence
of the centrifugal head is not very important. Professor
James Thomson first pointed out the advantage of a much greater
difference of radii. By making ri : ro = 2 : 1, the centrifugal head
balances about half the head in the supply chamber. Then the
velocity through the guide-blades does not exceed the velocity due
to half the fall, and the action of the centrifugal head in securing
steadiness of speed is considerable.

Since the total head producing flow through the turbine is H − ɧ,
of this hi − ho is expended in overcoming the pressure in the
wheel, the velocity of flow into the wheel is

vi = cv √ {2g (H − ɧ − (Vi2 − Vo2 / 2g + (vro2 − vri2) / 2g) ],

(18)

where cv may be taken 0.96.

From (14a),

vro = Vo √ (1 + uo2 / Vo2).

It will be shown immediately that

vri = ui cosec θ;

or, as this is only a small term, and θ is on the average 90°, we
may take, for the present purpose, vri = ui nearly.

Inserting these values, and remembering that for an axial flow
turbine Vi = Vo, ɧ = 0, and the fall d in the wheel is to be added,


	vi = cv √ { 2g ( H − 	Vi2
	( 1 + 	uo2
	) + 	ui2
	− d ) }.

	2g 	Vo2
	2g


For an outward flow turbine,


	vi = cv √ [ 2g { H − ɧ − 	Vi2
	( 1 + 	uo2
	) + 	ui2
	} ].

	2g 	Vi2
	2g


For an inward flow turbine,


	vi = cv √ [ 2g { H − 	Vi2
	( 1 + 	uo2
	) + 	ui2
	} ].

	2g 	Vi2
	2g


§ 194. Angle which the Guide-Blades make with the Circumference
of the Wheel.—At the moment the water enters the wheel, the
radial component of the velocity is ui, and the velocity is vi. Hence,
if γ is the angle between the guide-blades and a tangent to the
wheel

γ = sin−1 (ui/vi).

This angle can, if necessary, be corrected to allow for the thickness
of the guide-blades.


	

	Fig. 196.


§ 195. Condition determining the Angle of the Vanes at the Inlet
Surface of the Wheel.—The single condition necessary to be satisfied
at the inlet surface of
the wheel is that the
water should enter the
wheel without shock.
This condition is satisfied
if the direction of
relative motion of the
water and wheel is
parallel to the first
element of the wheel
vanes.

Let A (fig. 196) be a
point on the inlet surface
of the wheel, and
let vi represent in
magnitude and direction
the velocity of the water entering the wheel, and Vi the velocity
of the wheel. Completing the parallelogram, vri is the direction of
relative motion. Hence the angle between vri and Vi is the angle θ
which the vanes should make with the inlet surface of the wheel.

§ 196. Example of the Method of designing a Turbine. Professor
James Thomson’s Inward Flow Turbine.—

	 
Let H = the available fall after deducting loss of head in pipes
        and channels from the gross fall;

Q = the supply of water in cubic feet per second; and

η = the efficiency of the turbine.


 


The work done per second is ηGQH, and the horse-power of the
turbine is h.p. = ηGQH/550. If η is taken at 0.75, an allowance will
be made for the frictional losses in the turbine, the leakage and the
friction of the turbine shaft. Then h.p. = 0.085QH.

The velocity of flow through the turbine (uncorrected for the
space occupied by the vanes and guide-blades) may be taken

ui = ui = 0.125 √2gH,

in which case about 1⁄64th of the energy of the fall is carried away by
the water discharged.

The areas of the outlet and inlet surface of the wheel are then

2πrodo = 2πridi = Q / 0.125 √ (2gH).

If we take ro, so that the axial velocity of discharge from the central
orifices of the wheel is equal to uo, we get

	 
ro = 0.3984 √ (Q/√H),

do = ro.


 


If, to obtain considerable steadying action of the centrifugal head,
ri = 2ro, then di = 1⁄2do.

Speed of the Wheel.—Let Vi = 0.66 √2gH, or the speed due to half
the fall nearly. Then the number of rotations of the turbine per
second is

N = Vi / 2πri = 1.0579 √ (H √ H/Q);

also

Vo = Viro / ri = 0.33 √2gH.

Angle of Vanes with Outlet Surface.

Tan φ = uo / Vo = 0.125 / 0.33 = .3788;

φ = 21º nearly.

If this value is revised for the vane thickness it will ordinarily
become about 25º.

Velocity with which the Water enters the Wheel.—The head producing
the velocity is

	 
H − (Vi2 / 2g) (1 + uo2 / Vi2) + ui2 / 2g

= H {1 − .4356 (1 + 0.0358) + .0156}

= 0.5646H.


 


Then the velocity is

Vi = .96 √2g (.5646H) = 0.721 √2gH.

Angle of Guide-Blades.

Sin γ = ui / vi = 0.125 / 0.721 = 0.173;

γ = 10° nearly.

Tangential Velocity of Water entering Wheel.

wi = vi cos γ = 0.7101 √2gH.

Angle of Vanes at Inlet Surface.

Cot θ = (wi − Vi) / ui = (.7101 − .66) / .125 = .4008;

θ = 68° nearly.

Hydraulic Efficiency of Wheel.

	 
η = wiVi / gH = .7101 × .66 × 2

= 0.9373.


 


This, however, neglects the friction of wheel covers and leakage.
The efficiency from experiment has been found to be 0.75 to 0.80.



Impulse and Partial Admission Turbines.

§ 197. The principal defect of most turbines with complete
admission is the imperfection of the arrangements for working
with less than the normal supply. With many forms of reaction
turbine the efficiency is considerably reduced when the regulating

sluices are partially closed, but it is exactly when the supply
of water is deficient that it is most important to get out of
it the greatest possible amount of work. The imperfection of
the regulating arrangements is therefore, from the practical
point of view, a serious defect. All turbine makers have sought
by various methods to improve the regulating mechanism.
B. Fourneyron, by dividing his wheel by horizontal diaphragms,
virtually obtained three or more separate radial flow turbines,
which could be successively set in action at their full power,
but the arrangement is not altogether successful, because of
the spreading of the water in the space between the wheel and
guide-blades. Fontaine similarly employed two concentric
axial flow turbines formed in the same casing. One was worked
at full power, the other regulated. By this arrangement the
loss of efficiency due to the action of the regulating sluice affected
only half the water power. Many makers have adopted the
expedient of erecting two or three separate turbines on the same
waterfall. Then one or more could be put out of action and the
others worked at full power. All these methods are rather
palliatives than remedies. The movable guide-blades of
Professor James Thomson meet the difficulty directly, but they
are not applicable to every form of turbine.


	

	Fig. 197.


C. Callon, in 1840, patented an arrangement of sluices for
axial or outward flow turbines, which were to be closed successively
as the water supply diminished. By preference the sluices
were closed by pairs, two diametrically opposite sluices forming
a pair. The water was thus admitted to opposite but equal
arcs of the wheel, and the forces driving the turbine were symmetrically
placed. As soon as this arrangement was adopted,
a modification of the mode of action of the water in the turbine
became necessary. If the turbine wheel passages remain full of
water during the whole rotation, the water contained in each
passage must be put into motion each time it passes an open
portion of the sluice, and stopped each time it passes a closed
portion of the sluice. It is thus put into motion and stopped
twice in each rotation. This gives rise to violent eddying
motions and great loss of energy in shock. To prevent this, the
turbine wheel with partial admission must be placed above the
tail water, and the wheel passages be allowed to clear themselves
of water, while passing from one open portion of the sluices to
the next.

But if the wheel passages are free of water when they arrive
at the open guide passages, then there can be no pressure other
than atmospheric pressure in the clearance space between guides
and wheel. The water must issue from the sluices with the whole
velocity due to the head; received on the curved vanes of the
wheel, the jets must be gradually deviated and discharged with
a small final velocity only, precisely in the same way as when
a single jet strikes a curved vane in the free air. Turbines of
this kind are therefore termed turbines of free deviation. There
is no variation of pressure in the jet during the whole time of
its action on the wheel, and the whole energy of the jet is imparted
to the wheel, simply by the impulse due to its gradual
change of momentum. It is clear that the water may be admitted
in exactly the same way to any fraction of the circumference
at pleasure, without altering the efficiency of the wheel. The
diameter of the wheel may be made as large as convenient, and
the water admitted to a small fraction of the circumference only.
Then the number of revolutions is independent of the water
velocity, and may be kept down to a manageable value.


	
	

	Fig. 198.
	Fig. 199.



§ 198. General Description of an Impulse Turbine or Turbine with
Free Deviation.—Fig. 197 shows a general sectional elevation of a
Girard turbine, in
which the flow is
axial. The water,
admitted above a
horizontal floor,
passes down through
the annular wheel
containing the guide-blades
G, G, and
thence into the revolving
wheel WW.
The revolving wheel
is fixed to a hollow
shaft suspended from
the pivot p. The solid
internal shaft ss is
merely a fixed column
supporting the pivot.
The advantage of this
is that the pivot is
accessible for lubrication and adjustment. B is the mortise bevel
wheel by which the power of the turbine is given off. The sluices
are worked by the hand wheel h, which raises them successively,
in a way to be described presently. d, d are the sluice rods. Figs.
198, 199 show the sectional form of the guide-blade chamber and
wheel and the curves of the wheel vanes and guide-blades, when
drawn on a plane development
of the cylindrical
section of the
wheel; a, a, a are the
sluices for cutting off
the water; b, b, b are
apertures by which the
entrance or exit of air
is facilitated as the
buckets empty and fill.
Figs. 200, 201 show the
guide-blade gear. a, a, a
are the sluice rods as
before. At the top of
each sluice rod is a
small block c, having
a projecting tongue,
which slides in the
groove of the circular
cam plate d, d. This
circular plate is supported
on the frame e,
and revolves on it by means of the flanged rollers f. Inside, at the
top, the cam plate is toothed, and gears into a spur pinion connected
with the hand wheel h. At gg is an inclined groove or shunt. When
the tongues of the blocks c, c arrive at g, they slide up to a second
groove, or the reverse, according as the cam plate is revolved in one
direction or in the other. As this operation takes place with each

sluice successively, any number of sluices can be opened or closed as
desired. The turbine is of 48 horse power on 5.12 ft. fall, and the
supply of water varies from 35 to 112 cub. ft. per second. The
efficiency in normal working is given as 73%. The mean diameter
of the wheel is 6 ft., and the speed 27.4 revolutions per minute.


	

	Fig. 200.



	

	Fig. 201.



	

	Fig. 202.


As an example of a partial admission radial flow impulse turbine,
a 100 h.p. turbine at Immenstadt may be taken. The fall varies
from 538 to 570 ft. The external diameter of the wheel is 41⁄2 ft., and
its internal diameter 3 ft. 10 in. Normal speed 400 revs. per minute.
Water is discharged into the wheel by a single nozzle, shown in fig.
202 with its regulating apparatus and some of the vanes. The water
enters the wheel
at an angle of 22°
with the direction
of motion,
and the final
angle of the wheel
vanes is 20°. The
efficiency on trial
was from 75 to
78%.

§ 199. Theory
of the Impulse
Turbine.—The
theory of the impulse
turbine
does not essentially
differ from
that of the reaction
turbine,
except that there
is no pressure in
the wheel opposing
the discharge
from the guide-blades. Hence the velocity with which the water
enters the wheel is simply

vi = 0.96 √2g (H − ɧ),

where ɧ is the height of the top of the wheel above the tail water.
If the hydropneumatic system is used, then ɧ = 0. Let Qm be the
maximum supply of water, r1, r2 the internal and external radii of
the wheel at the inlet surface; then

ui = Qm / {π(r22 − r12)}.

The value of ui may be about 0.45 √2g (H − ɧ), whence r1, r2 can be
determined.

The guide-blade angle is then given by the equation

sin γ = ui / vi = 0.45 / 0.94 = .48;

γ = 29°.

The value of ui should, however, be corrected for the space occupied
by the guide-blades.

The tangential velocity of the entering water is

wi = vi cos γ = 0.82 √2g (H − ɧ).

The circumferential velocity of the wheel may be (at mean radius)

Vi = 0.5 √2g (H − ɧ).

Hence the vane angle at inlet surface is given by the equation

cot θ = (wi − Vi) / ui = (0.82 − 0.5) / 0.45 = .71;

θ = 55°.

The relative velocity of the water striking the vane at the inlet
edge is vri = ui cosec θ = 1.22ui. This relative velocity remains
unchanged during the passage of the water over the vane; consequently
the relative velocity at the point of discharge is vro = 1.22ui.
Also in an axial flow turbine Vo = Vi.

If the final velocity of the water is axial, then

cos φ = Vo / vro = Vi / vri = 0.5 / (1.22 × 0.45) = cos 24º 23′.

This should be corrected for the vane thickness. Neglecting this,
uo = vro sin φ = vri sin φ = ui cosec θ sin φ = 0.5ui. The discharging area
of the wheel must therefore be greater than the inlet area in the
ratio of at least 2 to 1. In some actual turbines the ratio is 7 to 3.
This greater outlet area is obtained by splaying the wheel, as shown
in the section (fig. 199).


	

	Fig. 203.


§ 200. Pelton Wheel.—In the mining district of California about
1860 simple impulse wheels were used, termed hurdy-gurdy wheels.
The wheels rotated in a vertical plane, being supported on a horizontal
axis. Round the circumference were fixed flat vanes which
were struck normally by a jet from a nozzle of size varying with the
head and quantity of water. Such wheels have in fact long been used.
They are not efficient, but they are very
simply constructed. Then attempts were
made to improve the efficiency, first by using
hemispherical cup vanes, and then by using
a double cup vane with a central dividing
ridge, an arrangement invented by Pelton.
In this last form the water from the nozzle
passes half to each side of the wheel, just
escaping clear of the backs of the advancing
buckets. Fig. 203 shows a Pelton vane.
Some small modifications have been made
by other makers, but they are not of any great importance.
Fig. 204 shows a complete Pelton wheel with frame and casing,
supply pipe and nozzle. Pelton wheels have been very largely used
in America and to some extent in Europe. They are extremely
simple and easy to construct or repair and on falls of 100 ft. or more
are very efficient. The jet strikes tangentially to the mean radius
of the buckets, and the face of the buckets is not quite radial but at
right angles to the direction of the jet at the point of first impact.
For greatest efficiency the peripheral velocity of the wheel at the
mean radius of the buckets should be a little less than half the velocity
of the jet. As the radius of the wheel can be taken arbitrarily, the
number of revolutions per minute can be accommodated to that of
the machinery to be driven. Pelton wheels have been made as small
as 4 in. diameter, for driving sewing machines, and as large as 24 ft.
The efficiency on high falls is about 80%. When large power is
required two or three nozzles are used delivering on one wheel.
The width of the buckets should be not less than seven times the
diameter of the jet.
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At the Comstock mines, Nevada, there is a 36-in. Pelton wheel
made of a solid steel disk with phosphor bronze buckets riveted to
the rim. The head is 2100 ft. and the wheel makes 1150 revolutions
per minute, the peripheral velocity being 180 ft. per sec. With a 1⁄2-in.
nozzle the wheel uses 32 cub. ft. of water per minute and develops
100 h.p. At the Chollarshaft, Nevada, there are six Pelton wheels
on a fall of 1680 ft. driving electrical generators. With 5⁄8-in. nozzles
each develops 125 h.p.
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§ 201. Theory of the Pelton Wheel.—Suppose a jet with a velocity
v strikes tangentially a curved vane AB (fig. 205) moving in the
same direction with the velocity u. The water will flow over the
vane with the relative velocity v − u and at B will have the tangential

relative velocity v − u making an angle α with the direction of the
vane’s motion. Combining this with the velocity u of the vane, the
absolute velocity of the water leaving the vane will be w = Bc. The component
of w in the direction of motion of the vane is
Ba = Bb − ab = u − (v − u) cos α. Hence
if Q is the quantity of
water reaching the vane
per second the change of
momentum per second in
the direction of the vane’s
motion is (GQ/g) [v − {u − (v − u) cos α}] = (GQ/g) (v − u) (1 + cos α).
If a = 0°, cos α = 1, and the change
of momentum per second,
which is equal to the
effort driving the vane, is
P = 2(GQ/g) (v − u). The
work done on the vane is
Pu = 2(GQ/g) (v − u)u. If a
series of vanes are interposed
in succession, the
quantity of water impinging
on the vanes per second is the total discharge of the nozzle,
and the energy expended at the nozzle is GQv2/2g. Hence the
efficiency of the arrangement is, when α = 0°, neglecting friction,

η = 2Pu / GQv2 = 4 (v − u) u/v2,

which is a maximum and equal to unity if u = 1⁄2v. In that case the
whole energy of the jet is usefully expended in driving the series of
vanes. In practice α cannot be quite zero or the water leaving one
vane would strike the back of the next advancing vane. Fig. 203
shows a Pelton vane. The water divides each way, and leaves the
vane on each side in a direction nearly parallel to the direction of
motion of the vane. The best velocity of the vane is very approximately
half the velocity of the jet.

§ 202. Regulation of the Pelton Wheel.—At first Pelton wheels were
adjusted to varying loads merely by throttling the supply. This
method involves a total loss of part of the head at the sluice or
throttle valve. In addition as the working head is reduced, the
relation between wheel velocity and jet velocity is no longer that of
greatest efficiency. Next a plan was adopted of deflecting the jet
so that only part of the water reached the wheel when the load was
reduced, the rest going to waste. This involved the use of an equal
quantity of water for large and small loads, but it had, what in some
cases is an advantage, the effect of preventing any water hammer in
the supply pipe due to the action of the regulator. In most cases
now regulation is effected by varying the section of the jet. A
conical needle in the nozzle can be advanced or withdrawn so as to
occupy more or less of the aperture of the nozzle. Such a needle can
be controlled by an ordinary governor.



§ 203. General Considerations on the Choice of a Type of
Turbine.—The circumferential speed of any turbine is necessarily
a fraction of the initial velocity of the water, and therefore is
greater as the head is greater. In reaction turbines with complete
admission the number of revolutions per minute becomes
inconveniently great, for the diameter cannot be increased
beyond certain limits without greatly reducing the efficiency.
In impulse turbines with partial admission the diameter can be
chosen arbitrarily and the number of revolutions kept down
on high falls to any desired amount. Hence broadly reaction
turbines are better and less costly on low falls, and impulse
turbines on high falls. For variable water flow impulse turbines
have some advantage, being more efficiently regulated. On the
other hand, impulse turbines lose efficiency seriously if their
speed varies from the normal speed due to the head. If the head
is very variable, as it often is on low falls, and the turbine must
run at the same speed whatever the head, the impulse turbine
is not suitable. Reaction turbines can be constructed so as to
overcome this difficulty to a great extent. Axial flow turbines
with vertical shafts have the disadvantage that in addition to
the weight of the turbine there is an unbalanced water pressure
to be carried by the footstep or collar bearing. In radial flow
turbines the hydraulic pressures are balanced. The application of
turbines to drive dynamos directly has involved some new conditions.
The electrical engineer generally desires a high speed
of rotation, and a very constant speed at all times. The reaction
turbine is generally more suitable than the impulse turbine.
As the diameter of the turbine depends on the quantity of water
and cannot be much varied without great inefficiency, a difficulty
arises on low falls. This has been met by constructing four
independent reaction turbines on the same shaft, each having of
course the diameter suitable for one-quarter of the whole discharge,
and having a higher speed of rotation than a larger
turbine. The turbines at Rheinfelden and Chevres are so constructed.
To ensure constant speed of rotation when the head
varies considerably without serious inefficiency, an axial flow
turbine is generally used. It is constructed of three or four
concentric rings of vanes, with independent regulating sluices,
forming practically independent turbines of different radii.
Any one of these or any combination can be used according to
the state of the water. With a high fall the turbine of largest
radius only is used, and the speed of rotation is less than with a
turbine of smaller radius. On the other hand, as the fall decreases
the inner turbines are used either singly or together, according
to the power required. At the Zürich waterworks there are
turbines of 90 h.p. on a fall varying from 101⁄2 ft. to 43⁄4 ft. The
power and speed are kept constant. Each turbine has three
concentric rings. The outermost ring gives 90 h.p. with 105
cub. ft. per second and the maximum fall. The outer and middle
compartments give the same power with 140 cub. ft. per second
and a fall of 7 ft. 10 in. All three compartments working together
develop the power with about 250 cub. ft. per second. In some
tests the efficiency was 74% with the outer ring working alone,
75.4% with the outer and middle ring working and a fall of
7 ft., and 80.7% with all the rings working.
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§ 204. Speed Governing.—When turbines are used to drive
dynamos direct, the question of speed regulation is of great importance.
Steam engines using a light elastic fluid can be easily
regulated by governors acting on throttle or expansion valves.
It is different with water turbines using a fluid of great inertia.
In one of the Niagara penstocks there are 400 tons of water
flowing at 10 ft. per second, opposing enormous resistance to rapid
change of speed of flow. The sluices of water turbines also are
necessarily large and heavy. Hence relay governors must be

used, and the tendency of relay governors to hunt must be
overcome. In the Niagara Falls Power House No. 1, each turbine
has a very sensitive centrifugal governor acting on a ratchet
relay. The governor puts into gear one or other of two ratchets
driven by the turbine itself. According as one or the other
ratchet is in gear the sluices are raised or lowered. By a subsidiary
arrangement the ratchets are gradually put out of gear
unless the governor puts them in gear again, and this prevents the
over correction of the speed from the lag in the action of the
governor. In the Niagara Power House No. 2, the relay is an
hydraulic relay similar in principle, but rather more complicated
in arrangement, to that shown in fig. 206, which is a governor
used for the 1250 h.p. turbines at Lyons. The sensitive governor
G opens a valve and puts into action a plunger driven by oil
pressure from an oil reservoir. As the plunger moves forward
it gradually closes the oil admission valve by lowering the
fulcrum end f of the valve lever which rests on a wedge w attached
to the plunger. If the speed is still too high, the governor reopens
the valve. In the case of the Niagara turbines the oil
pressure is 1200 ℔ per sq. in. One millimetre of movement of
the governor sleeve completely opens the relay valve, and the
relay plunger exerts a force of 50 tons. The sluices can be
completely opened or shut in twelve seconds. The ordinary
variation of speed of the turbine with varying load does not
exceed 1%. If all the load is thrown off, the momentary
variation of speed is not more than 5%. To prevent hydraulic
shock in the supply pipes, a relief valve is provided which opens
if the pressure is in excess of that due to the head.
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§ 205. The Hydraulic Ram.—The hydraulic ram is an arrangement
by which a quantity of water falling a distance h forces
a portion of the water to rise to a height h1, greater than h.
It consists of a supply reservoir (A, fig. 207), into which the water
enters from some natural stream. A pipe s of considerable
length conducts the water to a lower level, where it is discharged
intermittently through a self-acting pulsating valve at d. The
supply pipe s may be fitted with a flap valve for stopping the
ram, and this is attached in some cases to a float, so that the ram
starts and stops itself automatically, according as the supply
cistern fills or empties. The lower float is just sufficient to keep
open the flap after it has been raised by the action of the upper
float. The length of chain is adjusted so that the upper float
opens the flap when the level in the cistern is at the desired
height. If the water-level falls below the lower float the flap
closes. The pipe s should be as long and as straight as possible,
and as it is subjected to considerable pressure from the sudden
arrest of the motion of the water, it must be strong and strongly
jointed. a is an air vessel, and e the delivery pipe leading to
the reservoir at a higher level than A, into which water is to be
pumped. Fig. 208 shows in section the construction of the ram
itself. d is the pulsating discharge valve already mentioned,
which opens inwards and downwards. The stroke of the valve
is regulated by the cotter through the spindle, under which are
washers by which the amount of fall can be regulated. At o
is a delivery valve, opening outwards, which is often a ball-valve
but sometimes a flap-valve. The water which is pumped
passes through this valve into the air vessel a, from which it
flows by the delivery pipe in a regular stream into the cistern
to which the water is to be raised. In the vertical chamber
behind the outer valve a small air vessel is formed, and into
this opens an aperture 1⁄4 in. in diameter, made in a brass screw
plug b. The hole is reduced to 1⁄16 in. in diameter at the outer
end of the plug and is closed by a small valve opening inwards.
Through this, during the rebound after each stroke of the ram,
a small quantity of air is sucked in which keeps the air vessel
supplied with its elastic cushion of air.
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During the recoil after a sudden closing of the valve d, the
pressure below it is diminished and the valve opens, permitting
outflow. In consequence of the flow through this valve, the
water in the supply pipe acquires a gradually increasing velocity.
The upward flow of
the water, towards the
valve d, increases the
pressure tending to lift
the valve, and at last,
if the valve is not too
heavy, lifts and closes
it. The forward momentum
of the column
in the supply pipe
being destroyed by the
stoppage of the flow,
the water exerts a
pressure at the end of
the pipe sufficient to
open the delivery
valve o, and to cause
a portion of the water
to flow into the air
vessel. As the water
in the supply pipe
comes to rest and
recoils, the valve d
opens again and the
operation is repeated. Part of the energy of the descending
column is employed in compressing the air at the end of the
supply pipe and expanding the pipe itself. This causes a recoil
of the water which momentarily diminishes the pressure in the
pipe below the pressure due to the statical head. This assists
in opening the valve d. The recoil of the water is sufficiently
great to enable a pump to be attached to the ram body instead
of the direct rising pipe. With this arrangement a ram working
with muddy water may be employed to raise clear spring water.
Instead of lifting the delivery valve as in the ordinary ram, the
momentum of the column drives a sliding or elastic piston,
and the recoil brings it back. This piston lifts and forces
alternately the clear water through ordinary
pump valves.

Pumps

§ 206. The different classes of pumps correspond
almost exactly to the different classes
of water motors, although the mechanical
details of the construction are somewhat
different. They are properly reversed water
motors. Ordinary reciprocating pumps correspond
to water-pressure engines. Chain
and bucket pumps are in principle similar
to water wheels in which the water acts by
weight. Scoop wheels are similar to undershot water wheels,
and centrifugal pumps to turbines.

Reciprocating Pumps are single or double acting, and differ
from water-pressure engines in that the valves are moved by
the water instead of by automatic machinery. They may be
classed thus:—

1. Lift Pumps.—The water drawn through a foot valve on
the ascent of the pump bucket is forced through the bucket
valve when it descends, and lifted by the bucket when it reascends.
Such pumps give an intermittent discharge.

2. Plunger or Force Pumps, in which the water drawn through
the foot valve is displaced by the descent of a solid plunger, and
forced through a delivery valve. They have the advantage that

the friction is less than that of lift pumps, and the packing
round the plunger is easily accessible, whilst that round a lift
pump bucket is not. The flow is intermittent.

3. The Double-acting Force Pump is in principle a double
plunger pump. The discharge fluctuates from zero to a maximum
and back to zero each stroke, but is not arrested for any
appreciable time.

4. Bucket and Plunger Pumps consist of a lift pump bucket
combined with a plunger of half its area. The flow varies as in
a double-acting pump.

5. Diaphragm Pumps have been used, in which the solid
plunger is replaced by an elastic diaphragm, alternately depressed
into and raised out of a cylinder.

As single-acting pumps give an intermittent discharge three
are generally used on cranks at 120°. But with all pumps the
variation of velocity of discharge would cause great waste of work
in the delivery pipes when they are long, and even danger from
the hydraulic ramming action of the long column of water.
An air vessel is interposed between the pump and the delivery
pipes, of a volume from 5 to 100 times the space described by
the plunger per stroke. The air in this must be replenished
from time to time, or continuously, by a special air-pump.
At low speeds not exceeding 30 ft. per minute the delivery of a
pump is about 90 to 95% of the volume described by the plunger
or bucket, from 5 to 10% of the discharge being lost by leakage.
At high speeds the quantity pumped occasionally exceeds the
volume described by the plunger, the momentum of the water
keeping the valves open after the turn of the stroke.

The velocity of large mining pumps is about 140 ft. per minute,
the indoor or suction stroke being sometimes made at 250 ft.
per minute. Rotative pumping engines of large size have a
plunger speed of 90 ft. per minute. Small rotative pumps are
run faster, but at some loss of efficiency. Fire-engine pumps
have a speed of 180 to 220 ft. per minute.

The efficiency of reciprocating pumps varies very greatly.
Small reciprocating pumps, with metal valves on lifts of 15 ft.,
were found by Morin to have an efficiency of 16 to 40%, or on
the average 25%. When used to pump water at considerable
pressure, through hose pipes, the efficiency rose to from 28 to
57%, or on the average, with 50 to 100 ft. of lift, about 50%.
A large pump with barrels 18 in. diameter, at speeds under 60
ft. per minute, gave the following results:—


	Lift in feet 	141⁄2 	34 	47

	Efficiency 	.46 	.66 	.70



The very large steam-pumps employed for waterworks,
with 150 ft. or more of lift, appear to reach an efficiency of 90%,
not including the friction of the discharge pipes. Reckoned on
the indicated work of the steam-engine the efficiency may be
80%.

Many small pumps are now driven electrically and are usually
three-throw single-acting pumps driven from the electric motor
by gearing. It is not convenient to vary the speed of the motor
to accommodate it to the varying rate of pumping usually required.
Messrs Hayward Tyler have introduced a mechanism for varying
the stroke of the pumps (Sinclair’s patent) from full stroke
to nil, without stopping the pumps.

§ 207. Centrifugal Pump.—For large volumes of water on
lifts not exceeding about 60 ft. the most convenient pump is
the centrifugal pump. Recent improvements have made it
available also for very high lifts. It consists of a wheel or fan
with curved vanes enclosed in an annular chamber. Water flows
in at the centre and is discharged at the periphery. The fan
may rotate in a vertical or horizontal plane and the water may
enter on one or both sides of the fan. In the latter case there
is no axial unbalanced pressure. The fan and its casing must
be filled with water before it can start, so that if not drowned
there must be a foot valve on the suction pipe. When no special
attention needs to be paid to efficiency the water may have a
velocity of 6 to 7 ft. in the suction and delivery pipes. The fan
often has 6 to 12 vanes. For a double-inlet fan of diameter
D, the diameter of the inlets is D/2. If Q is the discharge in
cub. ft. per second D = about 0.6 √Q in average cases. The
peripheral speed is a little greater than the velocity due to the lift.
Ordinary centrifugal pumps will have an efficiency of 40 to 60%.

The first pump of this kind which attracted notice was one
exhibited by J. G. Appold in 1851, and the special features of
his pump have been retained in the best pumps since constructed.
Appold’s pump raised continuously a volume of water equal to
1400 times its own capacity per minute. It had no valves, and
it permitted the passage of solid bodies, such as walnuts and
oranges, without obstruction to its working. Its efficiency was
also found to be good.
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Fig. 209 shows the ordinary form of a centrifugal pump.
The pump disk and vanes B are cast in one, usually of bronze,

and the disk is keyed on the driving shaft C. The casing A
has a spirally enlarging discharge passage into the discharge
pipe K. A cover L gives access to the pump. S is the suction
pipe which opens into the pump disk on both sides at D.

Fig. 210 shows a centrifugal pump differing from ordinary
centrifugal pumps in one feature only. The water rises through
a suction pipe S, which divides so as to enter the pump wheel
W at the centre on each side. The pump disk or wheel is very
similar to a turbine wheel. It is keyed on a shaft driven by a
belt on a fast and loose pulley arrangement at P. The water
rotating in the pump disk presses outwards, and if the speed is
sufficient a continuous flow is maintained through the pump
and into the discharge pipe D. The special feature in this pump
is that the water, discharged by the pump disk with a whirling
velocity of not inconsiderable magnitude, is allowed to continue
rotation in a chamber somewhat larger than the pump. The
use of this whirlpool chamber was first suggested by Professor
James Thomson. It utilizes the energy due to the whirling
velocity of the water which in most pumps is wasted in eddies
in the discharge pipe. In the pump shown guide-blades are also
added which have the direction of the stream lines in a free
vortex. They do not therefore interfere with the action of the
water when pumping the normal quantity, but only prevent
irregular motion. At A is a plug by which the pump case is
filled before starting. If the pump is above the water to be
pumped, a foot valve is required to permit the pump to be filled.
Sometimes instead of the foot valve a delivery valve is used,
an air-pump or steam jet pump being employed to exhaust the
air from the pump case.
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§ 208. Design and Proportions of a Centrifugal Pump.—The design
of the pump disk is very simple. Let ri, ro be the radii of the inlet
and outlet surfaces of the pump disk, di, do the clear axial width at
those radii. The velocity of flow through the pump may be taken

the same as for a turbine. If Q is the quantity pumped, and H the
lift,

ui = 0.25 √2gH.

 2πridi = Q / ui.

(1)

Also in practice

di = 1.2 ri ....

Hence,

ri = .2571 √ (Q / √H).

(2)

Usually

ro = 2ri,

and

do = di or 1⁄2 di

according as the disk is parallel-sided or coned. The water enters
the wheel radially with the velocity ui, and

uo = Q / 2πrodo.

(3)


	

	Fig. 211.


Fig. 211 shows the notation adopted for the velocities.
Suppose the water enters the wheel with the velocity vi, while
the velocity of the
wheel is Vi. Completing
the parallelogram,
vri is the relative
velocity of the
water and wheel, and
is the proper direction
of the wheel vanes.
Also, by resolving, ui
and wi are the component
velocities of
flow and velocities of
whir of the velocity vi
of the water. At the
outlet surface, vo is the
final velocity of discharge,
and the rest of
the notation is similar to that for the inlet surface.

Usually the water flows equally in all directions in the eye of the
wheel, in that case vi is radial. Then, in normal conditions of working,
at the inlet surface,

	 
vi = ui

wi = 0

tan θ = ui / Vi

vri = ui cosec θ = √ (ui2 + Vi2).


 


(4)

If the pump is raising less or more than its proper quantity, θ will
not satisfy the last condition, and there is then some loss of head in
shock.

At the outer circumference of the wheel or outlet surface,

	 
vro = uo cosec φ

wo = Vo − uo cot φ

vo = √ {uo2 + (Vo − uo cot φ)2}


 


(5)

Variation of Pressure in the Pump Disk.—Precisely as in the case
of turbines, it can be shown that the variation of pressure between
the inlet and outlet surfaces of the pump is

ho − hi = (Vo2 − Vi2) / 2g − (vro2 − vri2) / 2g.

Inserting the values of vro, vri in (4) and (5), we get for normal
conditions of working

ho − hi = (Vo2 − Vi2) / 2g − uo2 cosec2 φ / 2g + (ui2 + Vi2) / 2g

 = Vo2 / 2g − uo2 cosec2 φ / 2g + ui2 / 2g.

(6)

Hydraulic Efficiency of the Pump.—Neglecting disk friction,
journal friction, and leakage, the efficiency of the pump can be found
in the same way as that of turbines (§ 186). Let M be the moment
of the couple rotating the pump, and α its angular velocity;
wo, ro
the tangential velocity of the water and radius at the outlet
surface; wi, ri the same quantities at the inlet surface. Q being
the discharge per second, the change of angular momentum per
second is

(GQ/g) (woro − wiri).

Hence

M = (GQ/g) (woro − wiri).

In normal working, wi = 0. Also, multiplying by the angular velocity,
the work done per second is

Mα = (GQ/g) woroα.

But the useful work done in pumping is GQH. Therefore the
efficiency is

η = GQH / Mα = gH / woroα = gH / woVo.

(7)

§ 209. Case 1. Centrifugal Pump with no Whirlpool Chamber.—When
no special provision is made to utilize the energy of motion of
the water leaving the wheel, and the pump discharges directly into a
chamber in which the water is flowing to the discharge pipe, nearly
the whole of the energy of the water leaving the disk is wasted. The
water leaves the disk with the more or less considerable velocity
vo,
and impinges on a mass flowing to the discharge pipe at the much
slower velocity vs. The radial component of vo is almost necessarily
wasted. From the tangential component there is a gain of pressure

(wo2 − vs2) / 2g − (wo − vs)2 / 2g

 = vs (wo − vs) / g,

which will be small, if vs is small compared with wo. Its greatest
value, if vs = 1⁄2wo, is 1⁄2wo2/2g, which will always be a small part of the
whole head. Suppose this neglected. The whole variation of
pressure in the pump disk then balances the lift and the head
ui2/2g necessary to give the initial velocity of flow in the eye of the
wheel.

ui2 / 2g + H = Vo2 / 2g − uo2 cosec2 φ / 2g + ui2 / 2g,

H = Vo2 / 2g − uo2 cosec2 φ / 2g

or

Vo = √ (2gH + uo2 cosec2 φ).

(8)

and the efficiency of the pump is, from (7),

η = gH / Vowo = gH / {V (Vo − no cot φ) },

 = (Vo2 − uo2 cosec2 φ) / {2Vo (Vo − uo cot φ) },

(9)

For φ = 90°,

η = (Vo2 − uo2) / 2Vo2,

which is necessarily less than 1⁄2. That is, half the work expended in
driving the pump is wasted. By recurving the vanes, a plan introduced
by Appold, the efficiency is increased, because the velocity
vo of discharge from the pump is diminished. If φ is very small,

cosec φ = cot φ;

and then

η = (Vo, + uo cosec φ) / 2Vo,

which may approach the value 1, as φ tends towards 0. Equation
(8) shows that uo cosec φ cannot be greater than Vo. Putting
uo = 0.25 √(2gH) we get the following numerical values of the
efficiency and the circumferential velocity of the pump:—




	φ 	η 	Vo

	90° 	0.47 	1.03 √2gH

	45° 	0.56 	1.06 ”

	30° 	0.65 	1.12 ”

	20° 	0.73 	1.24 ”

	10° 	0.84 	1.75 ”



φ cannot practically be made less than 20°; and, allowing for the
frictional losses neglected, the efficiency of a pump in which φ = 20° is
found to be about .60.

§ 210. Case 2. Pump with a Whirlpool Chamber, as in fig. 210.—Professor
James Thomson first suggested that the energy of the water
after leaving the pump disk might be utilized, if a space were left
in which a free vortex could be formed. In such a free vortex the
velocity varies inversely as the radius. The gain of pressure in the
vortex chamber is, putting ro, rw for the radii to the outlet surface
of wheel and to outside of free vortex,


	vo2
	( 1 − 	ro2
	) = 	vo2
	( 1 − k2 ),

	2g 	rw2
	2g


if

k = ro / rw.

The lift is then, adding this to the lift in the last case,

H = {Vo2 − uo2 cosec2 φ + vo2 (1 − k2)} / 2g.

But

vo2 = Vo2 − 2Vouo cot φ + uo2 cosec2 φ;

∴ H = {(2 − k2) Vo2 − 2kVouo cot φ − k2uo2 cosec2 φ} / 2g.

(10)

Putting this in the expression for the efficiency, we find a considerable
increase of efficiency. Thus with


	φ = 90° and 	k = 1⁄2, 	η = 7⁄8 nearly,

	φ a small angle and 	k = 1⁄2, 	η = 1 nearly.



With this arrangement of pump, therefore, the angle at the outer
ends of the vanes is of comparatively little importance. A moderate
angle of 30° or 40° may very well be adopted. The following
numerical values of the velocity of the circumference of the pump
have been obtained by taking k = 1⁄2, and uo = 0.25√(2gH).


	φ 	Vo

	90° 	 .762 √2gH

	45° 	 .842 ”

	30° 	 .911 ”

	20° 	1.023 ”



The quantity of water to be pumped by a centrifugal pump necessarily
varies, and an adjustment for different quantities of water cannot
easily be introduced. Hence it is that the average efficiency of
pumps of this kind is in practice less than the efficiencies given above.
The advantage of a vortex chamber is also generally neglected. The
velocity in the supply and discharge pipes is also often made greater
than is consistent with a high degree of efficiency. Velocities of 6
or 7 ft. per second in the discharge and suction pipes, when the lift
is small, cause a very sensible waste of energy; 3 to 6 ft. would
be much better. Centrifugal pumps of very large size have been
constructed. Easton and Anderson made pumps for the North Sea
canal in Holland to deliver each 670 tons of water per minute on a
lift of 5 ft. The pump disks are 8 ft. diameter. J. and H. Gwynne
constructed some pumps for draining the Ferrarese Marshes, which
together deliver 2000 tons per minute. A pump made under Professor
J. Thomson’s direction for drainage works in Barbados had
a pump disk 16 ft. in diameter and a whirlpool chamber 32 ft. in
diameter. The efficiency of centrifugal pumps when delivering less
or more than the normal quantity of water is discussed in a paper in
the Proc. Inst. Civ. Eng. vol. 53.



§ 211. High Lift Centrifugal Pumps.—It has long been known
that centrifugal pumps could be worked in series, each pump
overcoming a part of the lift. This method has been perfected,
and centrifugal pumps for very high lifts with great efficiency
have been used by Sulzer and others. C. W. Darley (Proc. Inst.
Civ. Eng., supplement to vol. 154, p. 156) has described some
pumps of this new type driven by Parsons steam turbines for
the water supply of Sydney, N.S.W. Each pump was designed to
deliver 11⁄2 million gallons per twenty-four hours against a head
of 240 ft. at 3300 revs. per minute. Three pumps in series give
therefore a lift of 720 ft. The pump consists of a central double-sided
impeller 12 in. diameter. The water entering at the
bottom divides and enters the runner at each side through a
bell-mouthed passage. The shaft is provided with ring and
groove glands which on the suction side keep the air out and on
the pressure side prevent leakage. Some water from the pressure
side leaks through the glands, but beyond the first grooves it
passes into a pocket and is returned to the suction side of the pump.
For the glands on the suction side water is supplied from a low-pressure
service. No packing is used in the glands. During
the trials no water was seen at the glands. The following are
the results of tests made at Newcastle:—


	  	I. 	II. 	III. 	IV.

	Duration of test 	hours 	2 	1.54 	1.2 	1.55

	Steam pressure 	℔ per sq. in. 	57 	57 	84 	55

	Weight of steam per water  h.p. hour 	℔ 	27.93 	30.67 	28.83 	27.89

	Speed in revs, per min. 	  	3300 	3330 	3710 	3340

	Height of suction 	ft. 	11 	11 	11 	11

	Total lift 	ft. 	762 	744 	917 	756

	Million galls. per day pumped— 	  	  	  	  	 

	  By Ventun meter 	  	1.573 	1.499 	1.689 	1.503

	   By orifice 	  	1.623 	1.513 	1.723 	1.555

	Water h.p. 	  	252 	235 	326 	239



In trial IV. the steam was superheated 95° F. From other
trials under the same conditions as trial I. the Parsons turbine
uses 15.6 ℔ of steam per brake h.p. hour, so that the combined
efficiency of turbine and pumps is about 56%, a remarkably
good result.


	

	Fig. 212.


§ 212. Air-Lift Pumps.—An interesting and simple method of
pumping by compressed air, invented by Dr J. Pohlé of Arizona,
is likely to be very useful in certain cases. Suppose a rising
main placed in a deep bore hole in which there is a considerable
depth of water. Air compressed to a sufficient pressure is conveyed
by an air pipe and introduced at the lower end of the rising
main. The air
rising In the main
diminishes the
average density
of the contents of
the main, and
their aggregate
weight no longer
balances the pressure
at the lower
end of the main
due to its submersion.
An upward
flow is set
up, and if the air
supply is sufficient
the water
in the rising main
is lifted to any
required height.
The higher the
lift above the
level in the bore
hole the deeper
must be the point
at which air is
injected. Fig.
212 shows an airlift
pump constructed
for W.
H. Maxwell at
the Tunbridge
Wells waterworks.
There is a
two-stage steam
air compressor,
compressing air to
from 90 to 100 ℔
per sq. in. The bore hole is 350 ft. deep, lined with steel pipes 15 in.
diameter for 200 ft. and with perforated pipes 131⁄2 in. diameter for
the lower 150 ft. The rest level of the water is 96 ft. from the
ground-level, and the level when pumping 32,000 gallons per hour
is 120 ft. from the ground-level. The rising main is 7 in. diameter,
and is carried nearly to the bottom of the bore hole and to
20 ft. above the ground-level. The air pipe is 21⁄2 in. diameter.
In a trial run 31,402 gallons per hour were raised 133 ft. above
the level in the well. Trials of the efficiency of the system made
at San Francisco with varying conditions will be found in a
paper by E. A. Rix (Journ. Amer. Assoc. Eng. Soc. vol. 25,

1900). Maxwell found the best results when the ratio of immersion
to lift was 3 to 1 at the start and 2.2 to 1 at the end of the trial.
In these conditions the efficiency was 37% calculated on the
indicated h.p. of the steam-engine, and 46% calculated on the
indicated work of the compressor. 2.7 volumes of free air were
used to 1 of water lifted. The system is suitable for temporary
purposes, especially as the quantity of water raised is much
greater than could be pumped by any other system in a bore
hole of a given size. It is useful for clearing a boring of sand
and may be advantageously used permanently when a boring
is in sand or gravel which cannot be kept out of the bore hole.
The initial cost is small.

§ 213. Centrifugal Fans.—Centrifugal fans are constructed
similarly to centrifugal pumps, and are used for compressing
air to pressures not exceeding 10 to 15 in. of water-column.
With this small variation of pressure the variation of volume
and density of the air may be neglected without sensible error.
The conditions of pressure and discharge for fans are generally
less accurately known than in the case of pumps, and the
design of fans is generally somewhat crude. They seldom have
whirlpool chambers, though a large expanding outlet is provided
in the case of the important Guibal fans used in mine
ventilation.


It is usual to reckon the difference of pressure at the inlet
and outlet of a fan in inches of water-column. One inch of water-column
= 64.4 ft. of air at average atmospheric pressure = 5.2℔ per
sq. ft.

Roughly the pressure-head produced in a fan without means of
utilizing the kinetic energy of discharge would be v2/2g ft. of air, or
0.00024 v2 in. of water, where v is the velocity of the tips of the fan
blades in feet per second. If d is the diameter of the fan and t the width
at the external circumference, then πdt is the discharge area of the fan
disk. If Q is the discharge in cub. ft. per sec., u = Q/π dt is the radial
velocity of discharge which is numerically equal to the discharge per
square foot of outlet in cubic feet per second. As both the losses in the fan
and the work done are roughly proportional to u2 in fans of the same
type, and are also proportional to the gauge pressure p, then if the
losses are to be a constant percentage of the work done u may be
taken proportional to √p. In ordinary cases u = about 22 √p. The
width t of the fan is generally from 0.35 to 0.45d. Hence if Q is
given, the diameter of the fan should be:—

For t = 0.35d,    d = 0.20 √ (Q / √p)

For t = 0.45d,    d = 0.18 √ (Q / √p)

If p is the pressure difference in the fan in inches of water, and N the
revolutions of fan,


	v = πdN/60 	ft. per sec.

	N = 1230 √ p/d 	revs. per min.



As the pressure difference is small, the work done in compressing the
air is almost exactly 5.2pQ foot-pounds per second. Usually, however,
the kinetic energy of the air in the discharge pipe is not inconsiderable
compared with the work done in compression. If w is the velocity
of the air where the discharge pressure is measured, the air carries
away w2/2g foot-pounds per ℔ of air as kinetic energy. In Q cubic feet
or 0.0807Q ℔ the kinetic energy is 0.00125 Qw2 foot-pounds per
second.

The efficiency of fans is reckoned in two ways. If B.H.P. is the
effective horse-power applied at the fan shaft, then the efficiency
reckoned on the work of compression is

η = 5.2pQ / 550 B.H.P.

On the other hand, if the kinetic energy in the delivery pipe is taken
as part of the useful work the efficiency is

η2 = (5.2 pQ + 0.00125 Qw2) / 550 B.H.P.

Although the theory above is a rough one it agrees sufficiently with
experiment, with some merely numerical modifications.

An extremely interesting experimental investigation of the action
of centrifugal fans has been made by H. Heenan and W. Gilbert
(Proc. Inst. Civ. Eng. vol. 123, p. 272). The fans delivered through an
air trunk in which different resistances could be obtained by introducing
diaphragms with circular apertures of different sizes. Suppose
a fan run at constant speed with different resistances and the compression
pressure, discharge and brake horse-power measured. The
results plot in such a diagram as is shown in fig. 213. The less the
resistance to discharge, that is the larger the opening in the air trunk,
the greater the quantity of air discharged at the given speed of the
fan. On the other hand the compression pressure diminishes. The
curve marked total gauge is the compression pressure + the velocity
head in the discharge pipe, both in inches of water. This curve falls,
but not nearly so much as the compression curve, when the resistance
in the air trunk is diminished. The brake horse-power increases
as the resistance is diminished because the volume of discharge increases
very much. The curve marked efficiency is the efficiency
calculated on the work of compression only. It is zero for no discharge,
and zero also when there is no resistance and all the energy
given to the air is carried away as kinetic energy. There is a discharge
for which this efficiency is a maximum; it is about half the
discharge which there is when there is no resistance and the delivery
pipe is full open. The conditions of speed and discharge corresponding
to the greatest efficiency of compression are those ordinarily
taken as the best normal conditions of working. The curve marked
total efficiency gives the efficiency calculated on the work of compression
and kinetic energy of discharge. Messrs Gilbert and
Heenan found the efficiencies of ordinary fans calculated on the
compression to be 40 to 60% when working at about normal
conditions.


	

	Fig. 213.


Taking some of Messrs Heenan and Gilbert’s results for ordinary
fans in normal conditions, they have been found to agree fairly with
the following approximate rules. Let pc be the compression pressure
and q the volume discharged per second per square foot of outlet area of
fan. Then the total gauge pressure due to pressure of compression
and velocity of discharge is approximately: p = pc + 0.0004q2 in. of
water, so that if pc is given, p can be found approximately. The
pressure p depends on the circumferential speed v of the fan disk—

	 
p = 0.00025 v2 in. of water

v = 63 √p ft. per sec.


 


The discharge per square foot of outlet of fan is—

q = 15 to 18 √p cub. ft. per sec.

The total discharge is

Q = π dt q = 47 to 56 dt √p

For

t = .35d,   d = 0.22 to 0.25 √(Q / √p) ft.

 t = .45d,   d = 0.20 to 0.22 √(Q / √p) ft.

N = 1203 √ p/d.

These approximate equations, which are derived purely from
experiment, do not differ greatly from those obtained by the rough
theory given above. The theory helps to explain the reason for the
form of the empirical results.



(W. C. U.)


 
1 Except where other units are given, the units throughout this
article are feet, pounds, pounds per sq. ft., feet per second.

2 Journal de M. Liouville, t. xiii. (1868); Mémoires de l’Académie,
des Sciences de l’Institut de France, t. xxiii., xxiv. (1877).

3 The following theorem is taken from a paper by J. H. Cotterill,
“On the Distribution of Energy in a Mass of Fluid in Steady Motion,”
Phil. Mag., February 1876.

4 The discharge per second varied from .461 to .665
cub. ft. in two experiments. The coefficient .435 is derived
from the mean value.

5 “Formulae for the Flow of Water in Pipes,” Industries (Manchester,
1886).

6 Boussinesq has shown that this mode of determining the corrective
factor α is not satisfactory.

7 In general, because when the water leaves the turbine wheel it
ceases to act on the machine. If deflecting vanes or a whirlpool are
added to a turbine at the discharging side, then v1 may in part depend
on v2, and the statement above is no longer true.





HYDRAZINE (Diamidogen), N2H4 or H2 N·NH2, a compound
of hydrogen and nitrogen, first prepared by Th. Curtius in 1887
from diazo-acetic ester, N2CH·CO2C2H5. This ester, which is
obtained by the action of potassium nitrate on the hydrochloride
of amidoacetic ester, yields on hydrolysis with hot concentrated
potassium hydroxide an acid, which Curtius regarded as
C3H3N6(CO2H)3, but which A. Hantzsch and O. Silberrad
(Ber., 1900, 33, p. 58) showed to be C2H2N4(CO2H)2, bisdiazoacetic
acid. On digestion of its warm aqueous solution with
warm dilute sulphuric acid, hydrazine sulphate and oxalic acid
are obtained. C. A. Lobry de Bruyn (Ber., 1895, 28, p. 3085)
prepared free hydrazine by dissolving its hydrochloride in
methyl alcohol and adding sodium methylate; sodium chloride
was precipitated and the residual liquid afterwards fractionated
under reduced pressure. It can also be prepared by reducing
potassium dinitrososulphonate in ice cold water by means of
sodium amalgam:—





P. J. Schestakov (J. Russ. Phys. Chem. Soc., 1905, 37, p. 1)
obtained hydrazine by oxidizing urea with sodium hypochlorite
in the presence of benzaldehyde, which, by combining with the
hydrazine, protected it from oxidation. F. Raschig (German
Patent 198307, 1908) obtained good yields by oxidizing ammonia
with sodium hypochlorite in solutions made viscous with glue.
Free hydrazine is a colourless liquid which boils at 113.5° C.,
and solidifies about 0° C. to colourless crystals; it is heavier
than water, in which it dissolves with rise of temperature. It
is rapidly oxidized on exposure, is a strong reducing agent, and
reacts vigorously with the halogens. Under certain conditions
it may be oxidized to azoimide (A. W. Browne and F. F.
Shetterly, J. Amer. C.S., 1908, p. 53). By fractional distillation
of its aqueous solution hydrazine hydrate N2H4·H2O
(or perhaps H2N·NH3OH), a strong base, is obtained, which
precipitates the metals from solutions of copper and silver
salts at ordinary temperatures. It dissociates completely in a
vacuum at 143°, and when heated under atmospheric pressure
to 183° it decomposes into ammonia and nitrogen (A. Scott,
J. Chem. Soc., 1904, 85, p. 913). The sulphate N2H4·H2SO4,
crystallizes in tables which are slightly soluble in cold water
and readily soluble in hot water; it is decomposed by heating
above 250° C. with explosive evolution of gas and liberation of
sulphur. By the addition of barium chloride to the sulphate, a
solution of the hydrochloride is obtained, from which the
crystallized salt may be obtained on evaporation.


Many organic derivatives of hydrazine are known, the most
important being phenylhydrazine, which was discovered by Emil
Fischer in 1877. It can be best prepared by V. Meyer and Lecco’s
method (Ber., 1883, 16, p. 2976), which consists in reducing phenyldiazonium
chloride in concentrated hydrochloric acid solution with
stannous chloride also dissolved in concentrated hydrochloric acid.
Phenylhydrazine is liberated from the hydrochloride so obtained
by adding sodium hydroxide, the solution being then extracted with
ether, the ether distilled off, and the residual oil purified by distillation
under reduced pressure. Another method is due to E. Bamberger.
The diazonium chloride, by the addition of an alkaline
sulphite, is converted into a diazosulphonate, which is then reduced
by zinc dust and acetic acid to phenylhydrazine potassium sulphite.
This salt is then hydrolysed by heating it with hydrochloric acid—

	 
C6H5N2Cl + K2SO3 = KCl + C6H5N2·SO3K,

C6H5N2·SO3K + 2H = C6H5·NH·NH·SO3K,

C6H5NH·NH·SO3K + HCl + H2O = C6H5·NH·NH2·HCl + KHSO4.


 


Phenylhydrazine is a colourless oily liquid which turns brown on
exposure. It boils at 241° C., and melts at 17.5° C. It is slightly
soluble in water, and is strongly basic, forming well-defined salts
with acids. For the detection of substances containing the carbonyl
group (such for example as aldehydes and ketones) phenylhydrazine
is a very important reagent, since it combines with them with
elimination of water and the formation of well-defined hydrazones
(see Aldehydes, Ketones and Sugars). It is a strong reducing
agent; it precipitates cuprous oxide when heated with Fehling’s
solution, nitrogen and benzene being formed at the same
time—C6H5·NH·NH2 + 2CuO = Cu2O + N2 + H2O + C6H5. By energetic reduction
of phenylhydrazine (e.g. by use of zinc dust and hydrochloric
acid), ammonia and aniline are produced—C6H5NH·NH2 + 2H =
C6H5NH2 + NH3. It is also a most important synthetic reagent.
It combines with aceto-acetic ester to form phenylmethylpyrazolone,
from which antipyrine (q.v.) may be obtained. Indoles (q.v.) are
formed by heating certain hydrazones with anhydrous zinc chloride;
while semicarbazides, pyrrols (q.v.) and many other types of organic
compounds may be synthesized by the use of suitable phenylhydrazine
derivatives.





HYDRAZONE, in chemistry, a compound formed by the condensation
of a hydrazine with a carbonyl group (see Aldehydes;
Ketones).



HYDROCARBON, in chemistry, a compound of carbon and
hydrogen. Many occur in nature in the free state: for example,
natural gas, petroleum and paraffin are entirely composed of
such bodies; other natural sources are india-rubber, turpentine
and certain essential oils. They are also revealed by the spectroscope
in stars, comets and the sun. Of artificial productions the
most fruitful and important is provided by the destructive or
dry distillation of many organic substances; familiar examples
are the distillation of coal, which yields ordinary lighting gas,
composed of gaseous hydrocarbons, and also coal tar, which,
on subsequent fractional distillations, yields many liquid and
solid hydrocarbons, all of high industrial value. For details
reference should be made to the articles wherein the above
subjects are treated. From the chemical point of view the
hydrocarbons are of fundamental importance, and, on account
of their great number, and still greater number of derivatives,
they are studied as a separate branch of the science, namely,
organic chemistry.


See Chemistry for an account of their classification, &c.





HYDROCELE (Gr. ὕδωρ, water, and κήλη, tumour), the
medical term for any collection of fluid other than pus or blood
in the neighbourhood of the testis or cord. The fluid is usually
serous. Hydrocele may be congenital or arise in the middle-aged
without apparent cause, but it is usually associated with chronic
orchitis or with tertiary syphilitic enlargements. The hydrocele
appears as a rounded, fluctuating translucent swelling in the
scrotum, and when greatly distended causes a dragging pain.
Palliative treatment consists in tapping aseptically and removing
the fluid, the patient afterwards wearing a suspender.
The condition frequently recurs and necessitates radical
treatment. Various substances may be injected; or the
hydrocele is incised, the tunica partly removed and the cavity
drained.



HYDROCEPHALUS (Gr. ὕδωρ, water, and κεφαλὴ, head),
a term applied to disease of the brain which is attended
with excessive effusion of fluid into its cavities. It exists
in two forms—acute and chronic hydrocephalus. Acute hydrocephalus
is another name for tuberculous meningitis (see
Meningitis).

Chronic hydrocephalus, or “water on the brain,” consists in
an effusion of fluid into the lateral ventricles of the brain. It
is not preceded by tuberculous deposit or acute inflammation,
but depends upon congenital malformation or upon chronic
inflammatory changes affecting the membranes. When the
disease is congenital, its presence in the foetus is apt to be a source
of difficulty in parturition. It is however more commonly
developed in the first six months of life; but it occasionally
arises in older children, or even in adults. The chief symptom
is the gradual increase in size of the upper part of the head out
of all proportion to the face or the rest of the body. Occurring
at an age when as yet the bones of the skull have not become
welded together, the enlargement may go on to an enormous
extent, the Spaces between the bones becoming more and more
expanded. In a well-marked case the deformity is very striking;
the upper part of the forehead projects abnormally, and the
orbital plates of the frontal bone being inclined forwards give
a downward tilt to the eyes, which have also peculiar rolling
movements. The face is small, and this, with the enlarged head,
gives a remarkable aged expression to the child. The body is
ill-nourished, the bones are thin, the hair is scanty and fine and
the teeth carious or absent.

The average circumference of the adult head is 22 in., and in
the normal child it is of course much less. In chronic hydrocephalus
the head of an infant three months old has measured
29 in.; and in the case of the man Cardinal, who died in Guy’s
Hospital, the head measured 33 in. In such cases the head
cannot be supported by the neck, and the patient has to keep
mostly in the recumbent posture. The expansibility of the skull
prevents destructive pressure on the brain, yet this organ is
materially affected by the presence of the fluid. The cerebral
ventricles are distended, and the convolutions are flattened.
Occasionally the fluid escapes into the cavity of the cranium,
which it fills, pressing down the brain to the base of the skull.
As a consequence, the functions of the brain are interfered
with, and the mental condition is impaired. The child is dull,
listless and irritable, and sometimes imbecile. The special senses
become affected as the disease advances; sight is often lost, as
is also hearing. Hydrocephalic children generally sink in a few
years; nevertheless there have been instances of persons with
this disease living to old age. There are, of course, grades of the
affection, and children may present many of the symptoms of
it in a slight degree, and yet recover, the head ceasing to expand,
and becoming in due course firmly ossified.



Various methods of treatment have been employed, but the
results are unsatisfactory. Compression of the head by bandages,
and the administration of mercury with the view of promoting
absorption of the fluid, are now little resorted to. Tapping the
fluid from time to time through one of the spaces between the
bones, drawing off a little, and thereafter employing gentle
pressure, has been tried, but rarely with benefit. Attempts have
also been made to establish a permanent drainage between the
interior of the lateral ventricle and the sub-dural space, and
between the lumbar region of the spine and the abdomen, but
without satisfactory results. On the whole, the plan of treatment
which aims at maintaining the patient’s nutrition by appropriate
food and tonics is the most rational and successful.

(E. O.*)




	

	Fig. 1.—Hydrocharis Morsusranae—Frog-bit—male
plant.

	1, Female flower.

2, Stamens, enlarged.

3, Barren pistil of male flower, enlarged.

4, Pistil of female flower.

5, Fruit.

6, Fruit cut transversely.

7, Seed.

8, 9, Floral diagrams of male and female flowers respectively.

s, Rudimentary stamens.



HYDROCHARIDEAE, in botany, a natural order of Monocotyledons,
belonging to the series Helobieae. They are water-plants,
represented in Britain by frog-bit (Hydrocharis Morsusranae)
and water-soldier (Stratiotes aloïdes). The order contains
about fifty species in fifteen genera, twelve of which occur in
fresh water while three are marine: and includes both floating
and submerged forms.
Hydrocharis floats on
the surface of still
water, and has rosettes
of kidney-shaped
leaves, from among
which spring the
flower-stalks; stolons
bearing new leaf-rosettes
are sent out
on all sides, the plant
thus propagating itself
on the same way as
the strawberry.
Stratiotes aloïdes has a
rosette of stiff sword-like
leaves, which when
the plant is in flower
project above the
surface; it is also
stoloniferous, the
young rosettes sinking
to the bottom at the
beginning of winter
and rising again to the
surface in the spring.
Vallisneria (eel-grass)
contains two species,
one native of tropical
Asia, the other inhabiting
the warmer
parts of both hemispheres
and reaching
as far north as south
Europe. It grows in
the mud at the bottom
of fresh water, and the
short stem bears a
cluster of long, narrow
grass-like leaves; new
plants are formed at
the end of horizontal
runners. Another type
is  represented by
Elodea canadensis or
water-thyme, which has been introduced into the British Isles from
North America. It is a small, submerged plant with long, slender
branching stems bearing whorls of narrow toothed leaves; the
flowers appear at the surface when mature. Halophila, Enhalus
and Thalassia are submerged maritime plants found on tropical
coasts, mainly in the Indian and Pacific oceans; Halophila has
an elongated stem rooting at the nodes; Enhalus a short, thick
rhizome, clothed with black threads resembling horse-hair, the
persistent hard-bast strands of the leaves; Thalassia has a
creeping rooting stem with upright branches bearing crowded
strap-shaped leaves in two rows. The flowers spring from, or are
enclosed in, a spathe, and are unisexual and regular, with
generally a calyx and corolla, each of three members; the
stamens are in whorls of three, the inner whorls are often barren;
the two to fifteen carpels form an inferior ovary containing
generally numerous ovules on often large, produced, parietal
placentas. The fruit is leathery or fleshy, opening irregularly.
The seeds contain a large embryo and no endosperm. In
Hydrocharis (fig.
1), which is dioecious,
the flowers
are borne above
the surface of the
water, have conspicuous
white
petals, contain
honey and are
pollinated by insects.
Stratiotes
has similar flowers
which come above
the surface only
for pollination,
becoming submerged
again
during ripening of
the fruit. In Vallisneria
(fig. 2),
which is also dioecious,
the small
male flowers are
borne in large
numbers in short-stalked
spathes;
the petals are
minute and scale-like,
and only two
of the three
stamens are fertile;
the flowers
become detached
before opening and rise to the surface, where the sepals expand
and form a float bearing the two projecting semi-erect stamens.
The female flowers are solitary and are raised to the surface
on a long, spiral stalk; the ovary bears three broad styles, on
which some of the
large, sticky
pollen-grains from
the floating male
flowers get deposited,
(fig. 3).
After pollination
the female flower
becomes  drawn
below the surface
by the spiral contraction
of the
long stalk, and the
fruit ripens near
the bottom.
Elodea has polygamous
flowers
(that is, male, female and hermaphrodite), solitary, in slender,
tubular spathes; the male flowers become detached and rise to
the surface; the females are raised to the surface when mature,
and receive the floating pollen from the male. The flowers of
Halophila are submerged and apetalous.


	
	

	Fig. 2.—Vallisneria spiralis—Eel grass—about
1⁄4 natural size. A, Female plant; B,
Male plant.
	Fig. 3.


The order is a widely distributed one; the marine forms are
tropical or subtropical, but the fresh-water genera occur also in
the temperate zones.





HYDROCHLORIC ACID, also known in commerce as “spirits
of salts” and “muriatic acid,” a compound of hydrogen and
chlorine. Its chemistry is discussed under Chlorine, and its
manufacture under Alkali Manufacture.



HYDRODYNAMICS (Gr. ὕδωρ, water, δύναμις, strength),
the branch of hydromechanics which discusses the motion of
fluids (see Hydromechanics).



HYDROGEN [symbol H, atomic weight 1.008 (o = 16)], one
of the chemical elements. Its name is derived from Gr. ὕδωρ,
water, and γεννάειν, to produce, in allusion to the fact that
water is produced when the gas burns in air. Hydrogen appears
to have been recognized by Paracelsus in the 16th century;
the combustibility of the gas was noticed by Turquet de Mayenne
in the 17th century, whilst in 1700 N. Lémery showed that a
mixture of hydrogen and air detonated on the application of
a light. The first definite experiments concerning the nature
of hydrogen were made in 1766 by H. Cavendish, who showed
that it was formed when various metals were acted upon by
dilute sulphuric or hydrochloric acids. Cavendish called it “inflammable
air,” and for some time it was confused with other
inflammable gases, all of which were supposed to contain the
same inflammable principle, “phlogiston,” in combination
with varying amounts of other substances. In 1781 Cavendish
showed that water was the only substance produced when
hydrogen was burned in air or oxygen, it having been thought
previously to this date that other substances were formed
during the reaction, A. L. Lavoisier making many experiments
with the object of finding an acid among the products of
combustion.

Hydrogen is found in the free state in some volcanic gases, in
fumaroles, in the carnallite of the Stassfurt potash mines (H.
Precht, Ber., 1886, 19, p. 2326), in some meteorites, in certain
stars and nebulae, and also in the envelopes of the sun. In
combination it is found as a constituent of water, of the gases
from certain mineral springs, in many minerals, and in most
animal and vegetable tissues. It may be prepared by the electrolysis
of acidulated water, by the decomposition of water by
various metals or metallic hydrides, and by the action of many
metals on acids or on bases. The alkali metals and alkaline earth
metals decompose water at ordinary temperatures; magnesium
begins to react above 70° C., and zinc at a dull red heat. The
decomposition of steam by red hot iron has been studied by
H. Sainte-Claire Deville (Comptes rendus, 1870, 70, p. 1105)
and by H. Debray (ibid., 1879, 88, p. 1341), who found that at
about 1500° C. a condition of equilibrium is reached. H. Moissan
(Bull. soc. chim., 1902, 27, p. 1141) has shown that potassium
hydride decomposes cold water, with evolution of hydrogen,
KH + H2O = KOH + H2. Calcium hydride or hydrolite, prepared
by passing hydrogen over heated calcium, decomposes water
similarly, 1 gram giving 1 litre of gas; it has been proposed
as a commercial source (Prats Aymerich, Abst. J.C.S., 1907, ii.
p. 543), as has also aluminium turnings moistened with potassium
cyanide and mercuric chloride, which decomposes water regularly
at 70°, 1 gram giving 1.3 litres of gas (Mauricheau-Beaupré,
Comptes rendus, 1908, 147, p. 310). Strontium hydride behaves
similarly. In preparing the gas by the action of metals on
acids, dilute sulphuric or hydrochloric acid is taken, and the
metals commonly used are zinc or iron. So obtained, it contains
many impurities, such as carbon dioxide, nitrogen, oxides of
nitrogen, phosphoretted hydrogen, arseniuretted hydrogen, &c.,
the removal of which is a matter of great difficulty (see E. W.
Morley, Amer. Chem. Journ., 1890, 12, p. 460). When prepared
by the action of metals on bases, zinc or aluminium and caustic
soda or caustic potash are used. Hydrogen may also be obtained
by the action of zinc on ammonium salts (the nitrate excepted)
(Lorin, Comptes rendus, 1865, 60, p. 745) and by heating
the alkali formates or oxalates with caustic potash or soda,
Na2C2O4 + 2NaOH = H2 + 2Na2CO3. Technically it is prepared
by the action of superheated steam on incandescent coke (see
F. Hembert and Henry, Comptes rendus, 1885, 101, p. 797;
A. Naumann and C. Pistor, Ber., 1885, 18, p. 1647), or by the
electrolysis of a dilute solution of caustic soda (C. Winssinger,
Chem. Zeit., 1898, 22, p. 609; “Die Elektrizitäts-Aktiengesellschaft,”
Zeit. f. Elektrochem., 1901, 7, p. 857). In the latter
method a 15% solution of caustic soda is used, and the
electrodes are made of iron; the cell is packed in a wooden
box, surrounded with sand, so that the temperature is kept
at about 70° C.; the solution is replenished, when necessary,
with distilled water. The purity of the gas obtained is about
97%.

Pure hydrogen is a tasteless, colourless and odourless gas of
specific gravity 0.06947 (air = 1) (Lord Rayleigh, Proc. Roy. Soc.,
1893, p. 319). It may be liquefied, the liquid boiling at −252.68°
C. to −252.84° C., and it has also been solidified, the solid melting
at −264° C. (J. Dewar, Comptes rendus, 1899, 129, p. 451;
Chem. News, 1901, 84, p. 49; see also Liquid Gases). The
specific heat of gaseous hydrogen (at constant pressure) is
3.4041 (water = 1), and the ratio of the specific heat at constant
pressure to the specific heat at constant volume is 1.3852 (W. C.
Röntgen, Pogg. Ann., 1873, 148, p. 580). On the spectrum see
Spectroscopy. Hydrogen is only very slightly soluble in water.
It diffuses very rapidly through a porous membrane, and through
some metals at a red heat (T. Graham, Proc. Roy. Soc., 1867, 15,
p. 223; H. Sainte-Claire Deville and L. Troost, Comptes rendus,
1863, 56, p. 977). Palladium and some other metals are capable
of absorbing large volumes of hydrogen (especially when the metal
is used as a cathode in a water electrolysis apparatus). L. Troost
and P. Hautefeuille (Ann. chim. phys., 1874, (5) 2, p. 279)
considered that a palladium hydride of composition Pd2H was
formed, but the investigations of C. Hoitsema (Zeit. phys. Chem.,
1895, 17, p. 1), from the standpoint of the phase rule, do not
favour this view, Hoitsema being of the opinion that the occlusion
of hydrogen by palladium is a process of continuous absorption.
Hydrogen burns with a pale blue non-luminous flame, but will
not support the combustion of ordinary combustibles. It forms
a highly explosive mixture with air or oxygen, especially when in
the proportion of two volumes of hydrogen to one volume of
oxygen. H. B. Baker (Proc. Chem. Soc., 1902, 18, p. 40) has
shown that perfectly dry hydrogen will not unite with perfectly
dry oxygen. Hydrogen combines with fluorine, even at very low
temperatures, with great violence; it also combines with carbon,
at the temperature of the electric arc. The alkali metals when
warmed in a current of hydrogen, at about 360° C., form hydrides
of composition RH (R = Na, K, Rb, Cs), (H. Moissan, Bull. soc.
chim., 1902, 27, p. 1141); calcium and strontium similarly
form hydrides CaH2, SrH2 at a dull red heat (A. Guntz, Comptes
rendus, 1901, 133, p. 1209). Hydrogen is a very powerful reducing
agent; the gas occluded by palladium being very
active in this respect, readily reducing ferric salts to
ferrous salts, nitrates to nitrites and ammonia, chlorates to
chlorides, &c.


For determinations of the volume ratio with which hydrogen and
oxygen combine, see J. B. Dumas, Ann. chim. phys., 1843 (3), 8,
p. 189; O. Erdmann and R. F. Marchand, ibid., p. 212; E. H.
Keiser, Ber., 1887, 20, p. 2323; J. P. Cooke and T. W. Richards,
Amer. Chem. Journ., 1888, 10, p. 191; Lord Rayleigh, Chem. News,
1889, 59, p. 147; E. W. Morley, Zeit. phys. Chem., 1890, 20, p. 417;
and S. A. Leduc, Comptes rendus, 1899, 128, p. 1158.



Hydrogen combines with oxygen to form two definite compounds,
namely, water (q.v.), H2O, and hydrogen peroxide,
H2O2, whilst the existence of a third oxide, ozonic acid, has been
indicated.

Hydrogen peroxide, H2O2, was discovered by L. J. Thénard in
1818 (Ann. chim. phys., 8, p. 306). It occurs in small quantities
in the atmosphere. It may be prepared by passing a current of
carbon dioxide through ice-cold water, to which small quantities
of barium peroxide are added from time to time (F. Duprey,
Comptes rendus, 1862, 55, p. 736; A. J. Balard, ibid., p. 758),
BaO2 + CO2 + H2O = H2O2 + BaCO3. E. Merck (Abst. J.C.S.,
1907, ii., p. 859) showed that barium percarbonate, BaCO4, is
formed when the gas is in excess; this substance readily yields
the peroxide with an acid. Or barium peroxide may be decomposed
by hydrochloric, hydrofluoric, sulphuric or silicofluoric
acids (L. Crismer, Bull. soc. chim., 1891 (3), 6, p. 24; Hanriot,
Comptes rendus, 1885, 100, pp. 56, 172), the peroxide being added

in small quantities to a cold dilute solution of the acid. It is
necessary that it should be as pure as possible since the commercial
product usually contains traces of ferric, manganic and aluminium
oxides, together with some silica. To purify the oxide, it is
dissolved in dilute hydrochloric acid until the acid is neatly
neutralized, the solution is cooled, filtered, and baryta water is
added until a faint permanent white precipitate of hydrated
barium peroxide appears; the solution is now filtered, and a
concentrated solution of baryta water is added to the filtrate,
when a crystalline precipitate of hydrated barium peroxide,
BaO2·H2O, is thrown down. This is filtered off and well washed
with water. The above methods give a dilute aqueous solution
of hydrogen peroxide, which may be concentrated somewhat
by evaporation over sulphuric acid in vacuo. H. P. Talbot and
H. R. Moody (Jour. Anal. Chem., 1892, 6, p. 650) prepared a more
concentrated solution from the commercial product, by the
addition of a 10% solution of alcohol and baryta water. The
solution is filtered, and the barium precipitated by sulphuric
acid. The alcohol is removed by distillation in vacuo, and by
further concentration in vacuo a solution may be obtained which
evolves 580 volumes of oxygen. R. Wolffenstein (Ber., 1894,
27, p. 2307) prepared practically anhydrous hydrogen peroxide
(containing 99.1% H2O2) by first removing all traces of dust,
heavy metals and alkali from the commercial 3% solution.
The solution is then concentrated in an open basis on the water-bath
until it contains 48% H2O2. The liquid so obtained is
extracted with ether and the ethereal solution distilled under
diminished pressure, and finally purified by repeated distillations.
W. Staedel (Zeit. f. angew. Chem., 1902, 15, p. 642) has described
solid hydrogen peroxide, obtained by freezing concentrated
solutions.

Hydrogen peroxide is also found as a product in many chemical
actions, being formed when carbon monoxide and cyanogen burn
in air (H. B. Dixon); by passing air through solutions of strong
bases in the presence of such metals as do not react with the
bases to liberate hydrogen; by shaking zinc amalgam with
alcoholic sulphuric acid and air (M. Traube, Ber., 1882, 15,
p. 659); in the oxidation of zinc, lead and copper in presence of
water, and in the electrolysis of sulphuric acid of such strength
that it contains two molecules of water to one molecule of
sulphuric acid (M. Berthelot, Comptes rendus, 1878, 86,
p. 71).

The anhydrous hydrogen peroxide obtained by Wolffenstein
boils at 84-85°C. (68 mm.); its specific gravity is 1.4996 (1.5° C.).
It is very explosive (W. Spring, Zeit. anorg. Chem., 1895, 8,
p. 424). The explosion risk seems to be most marked in the
preparations which have been extracted with ether previous to
distillation, and J. W. Brühl (Ber., 1895, 28, p. 2847) is of opinion
that a very unstable, more highly oxidized product is produced
in small quantity in the process. The solid variety prepared by
Staedel forms colourless, prismatic crystals which melt at −2° C.;
it is decomposed with explosive violence by platinum sponge, and
traces of manganese dioxide. The dilute aqueous solution is
very unstable, giving up oxygen readily, and decomposing with
explosive violence at 100° C. An aqueous solution containing
more than 1.5% hydrogen peroxide reacts slightly acid. Towards
lupetidin [aa′ dimethyl piperidine, C5H9N(CH3)2] hydrogen
peroxide acts as a dibasic acid (A. Marcuse and R. Wolffenstein,
Ber., 1901, 34, p. 2430; see also G. Bredig, Zeit. Electrochem.,
1901, 7, p. 622). Cryoscopic determinations of its molecular
weight show that it is H2O2. [G. Carrara, Rend. della Accad.
dei Lincei, 1892 (5), 1, ii. p. 19; W. R. Orndorff and J. White,
Amer. Chem. Journ., 1893, 15, p. 347.]  Hydrogen peroxide
behaves very frequently as a powerful oxidizing agent; thus
lead sulphide is converted into lead sulphate in presence of a
dilute aqueous solution of the peroxide, the hydroxides of the
alkaline earth metals are converted into peroxides of the type
MO2·8H2O, titanium dioxide is converted into the trioxide,
iodine is liberated from potassium iodide, and nitrites (in alkaline
solution) are converted into acid-amides (B. Radziszewski, Ber.,
1884, 17, p. 355). In many cases it is found that hydrogen
peroxide will only act as an oxidant when in the presence of a
catalyst; for example, formic, glycollic, lactic, tartaric, malic,
benzoic and other organic acids are readily oxidized in the
presence of ferrous sulphate (H. J. H. Fenton, Jour. Chem. Soc.,
1900, 77, p. 69), and sugars are readily oxidized in the presence
of ferric chloride (O. Fischer and M. Busch, Ber., 1891, 24,
p. 1871). It is sought to explain these oxidation processes by
assuming that the hydrogen peroxide unites with the compound
undergoing oxidation to form an addition compound, which
subsequently decomposes (J. H. Kastle and A. S. Loevenhart,
Amer. Chem. Journ., 1903, 29, pp. 397, 517). Hydrogen peroxide
can also react as a reducing agent, thus silver oxide is reduced
with a rapid evolution of oxygen. The course of this reaction can
scarcely be considered as definitely settled; M. Berthelot
considers that a higher oxide of silver is formed, whilst A.
Baeyer and V. Villiger are of opinion that reduced silver is
obtained [see Comptes rendus, 1901, 133, p. 555; Ann. Chim.
Phys., 1897 (7), 11, p. 217, and Ber., 1901, 34, p. 2769]. Potassium
permanganate, in the presence of dilute sulphuric acid, is rapidly
reduced by hydrogen peroxide, oxygen being given off,
2KMnO4 + 3H2SO4 + 5H2O2 = K2SO4 + 2MnSO4 + 8H2O + 5O2. Lead peroxide
is reduced to the monoxide. Hypochlorous acid and its salts,
together with the corresponding bromine and iodine compounds,
liberate oxygen violently from hydrogen peroxide, giving hydrochloric,
hydrobromic and hydriodic acids (S. Tanatar, Ber., 1899,
32, p. 1013).


On the constitution of hydrogen peroxide see C. F. Schönbein,
Jour. prak. Chem., 1858-1868; M. Traube, Ber., 1882-1889; J. W.
Brühl, Ber., 1895, 28, p. 2847; 1900, 33, p. 1709; S. Tanatar, Ber.,
1903, 36, p. 1893.

Hydrogen peroxide finds application as a bleaching agent, as an
antiseptic, for the removal of the last traces of chlorine and sulphur
dioxide employed in bleaching, and for various quantitative separations
in analytical chemistry (P. Jannasch, Ber., 1893, 26, p. 2908).
It may be estimated by titration with potassium permanganate in
acid solution; with potassium ferricyanide in alkaline solution,
2K3Fe(CN)6 + 2KOH + H2O2 = 2K4Fe(CN)6 + 2H2O + O2; or by oxidizing
arsenious acid in alkaline solution with the peroxide and
back titration of the excess of arsenious acid with standard iodine
(B. Grützner, Arch. der Pharm., 1899, 237, p. 705). It may be
recognized by the violet coloration it gives when added to a very
dilute solution of potassium bichromate in the presence of hydrochloric
acid; by the orange-red colour it gives with a solution of
titanium dioxide in concentrated sulphuric acid; and by the precipitate
of Prussian blue formed when it is added to a solution
containing ferric chloride and potassium ferricyanide.

Ozonic Acid, H2O4. By the action of ozone on a 40% solution
of potassium hydroxide, placed in a freezing mixture, an orange-brown
substance is obtained, probably K2O4, which A. Baeyer and
V. Villiger (Ber., 1902, 35, p. 3038) think is derived from ozonic
acid, produced according to the reaction O3 + H2O = H2O4.





HYDROGRAPHY (Gr. ὕδωρ, water, and γράφειν, to write),
the science dealing with all the waters of the earth’s surface,
including the description of their physical features and conditions;
the preparation of charts and maps showing the position
of lakes, rivers, seas and oceans, the contour of the sea-bottom,
the position of shallows, deeps, reefs and the direction and
volume of currents; a scientific description of the position,
volume, configuration, motion and condition of all the waters
of the earth. See also Surveying (Nautical) and Ocean and
Oceanography. The Hydrographic Department of the British
Admiralty, established in 1795, undertakes the making of charts
for the admiralty, and is under the charge of the hydrographer to
the admiralty (see Chart).



HYDROLYSIS (Gr. ὕδωρ, water, λύειν, to loosen), in chemistry,
a decomposition brought about by water after the manner shown
in the equation R·X + H·OH = R·H + X·OH. Modern research
has proved that such reactions are not occasioned by water
acting as H2O, but really by its ions (hydrions and hydroxidions),
for the velocity is proportional (in accordance with the law of
chemical mass action) to the concentration of these ions. This
fact explains the so-called “catalytic” action of acids and bases
in decomposing such compounds as the esters. The term
“saponification” (Lat. sapo, soap) has the same meaning, but
it is more properly restricted to the hydrolysis of the fats, i.e.
glyceryl esters of organic acids, into glycerin and a soap (see
Chemical Action).
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